Naval Facilities Engineering Command, Southwest Contracts Department 1220 Pacific Highway, Building 127, Room 112 San Diego, California 92132-5190

CONTRACT No. N68711-04-D-1104 CTO No. 0010

FINAL GROUNDWATER MONITORING REPORT UST SITE 14131

August 21, 2006

MARINE CORPS BASE CAMP PENDLETON, CALIFORNIA

DCN: SES-TECH-06-0151

Prepared by:

SES-TECH 13810 SE Eastgate Way, Suite 420 Bellevue, WA 98005

Justin Bartlett

Assistant Geoscientist

Mark Cutler, P.G., C.HG

Project Manager

MARK CUTLER

TABLE OF CONTENTS

	<u>PAGE</u>
LIST OF TABLES	ii
LIST OF FIGURES	ii
ABBREVIATIONS AND ACRONYMS	iii
1.0 INTRODUCTION	1-1
1.1 SCOPE OF WORK	1-1
1.2 SITE IDENTIFICATION	1-2
2.0 GROUNDWATER SAMPLING	2-1
2.1 WATER LEVEL MEASUREMENTS	2-1
2.2 SAMPLING METHODOLOGY	2-1
2.3 SAMPLE ANALYSES	2-2
2.4 WASTE MANAGEMENT	2-2
3.0 GROUNDWATER MONITORING RESULTS	3-1
3.1 GROUNDWATER FLOW DIRECTION	3-1
3.2 ANALYTICAL RESULTS	3-1
4.0 QUALITY ASSURANCE AND QUALITY CONTROL	4-1
5.0 SUMMARY	5-1
6.0 REFERENCES	6-1
APPENDICES	
Appendix A Well Sampling Logs	
Appendix B Non-Hazardous Waste Manifest	
Appendix C Laboratory Analytical Report and Chain-of-Custody Form	

LIST OF TABLES

Table 2-1	Summary of Groundwater Level Elevations, UST Site 14131, MCB Camp Pendleton, California
Table 3-1	Summary of Groundwater Sampling Results, UST Site 14131, MCB Camp Pendleton, California

LIST OF FIGURES

Figure 1-1	Site Vicinity Map

ABBREVIATIONS AND ACRONYMS

amsl above mean sea level

BTEX benzene, toluene, ethylbenzene and total xylenes

CTO Contract Task Order

DEH Department of Environmental Health

DO dissolved oxygen

DOT Department of Transportation

EPA U.S. Environmental Protection Agency

ft/ft feet per foot iron (II) ferrous iron

LCS laboratory control sample

LCSD laboratory control sample duplicate

MCB Marine Corps Base

NAVFAC SW Naval Facilities Engineering Command, Southwest

ORP oxidation/reduction potential

PAH polynuclear aromatic hydrocarbon

RPD relative percent difference

RWQCB Regional Water Quality Control Board

SES-TECH Sealaska Environmental Services LLC and Tetra Tech FW, Inc.

TPH-d total petroleum hydrocarbons quantified as diesel

UST Underground Storage Tank
VOC volatile organic compound

Water Board California Regional Water Quality Control Board

1.0 INTRODUCTION

This Groundwater Monitoring Report, prepared by SES-TECH, a joint venture between Sealaska Environmental Services LLC and Tetra Tech FW, Inc., presents the results of groundwater sampling completed in June 2006 at Underground Storage Tank (UST) Site 14131, Marine Corps Base (MCB) Camp Pendleton, California (Figure 1-1).

UST Site 14131 is regulated under the California State Water Resources Control Board Leaking UST program as administered by the California Regional Water Quality Control Board (Water Board, formerly RWQCB), San Diego Region, and this analysis was conducted in support of efforts to achieve regulatory site closure. The document guiding the assessment, remediation, and closure process for the site is the *San Diego County Site Assessment and Mitigation Manual 2004* (San Diego County Department of Environmental Health [DEH], 2004). This groundwater sampling event is the first of four consecutive quarterly events proposed to be completed as part of the monitored natural attenuation remedial action alternative requested for the site in the Corrective Action Plan (SES-TECH, 2006). The groundwater sampling activities conducted at the site, as well as the associated reporting activities, were performed under Contract Task Order (CTO) No. 0010 for the Naval Facilities Engineering Command, Southwest (NAVFAC SW), Contract No. N68711-04-D-1104.

1.1 SCOPE OF WORK

Groundwater monitoring at UST Site 14131 includes measuring water levels and collecting and analyzing groundwater samples. During this sampling event, monitoring wells MW3, MW5, MW6, and MW7 were sampled for total petroleum hydrocarbons quantified as diesel (TPH-d), volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), and natural attenuation parameters nitrate and sulfate.

1.2 SITE IDENTIFICATION

Site Address: Building 14131, 14 Area

MCB Camp Pendleton, CA 92055

Facility Name: Battalion Headquarters

County of San Diego DEH Case No.: H05939-266

Property Owner and Responsible Party: United States Marine Corps

MCB Camp Pendleton Contact: Mr. Chet Storrs, Remediation Branch Manager

Assistant Chief of Staff, Environmental

Security

Building 22165

MCB Camp Pendleton, CA 92055-5008

(760) 725-9774

Remedial Project Manager: Mr. Bipin Patel

NAVFAC SW

1220 Pacific Highway San Diego, CA 92132-5181

(619) 532-4814

2.0 GROUNDWATER SAMPLING

The following sections summarize the June 2006 quarterly sampling event, the first of four consecutive events to be completed at UST Site 14131.

2.1 WATER LEVEL MEASUREMENTS

As part of the groundwater sampling event, the depth to water and the total depth of each well were measured from the top of the well casing and recorded on a well sampling log (Appendix A). Table 2-1 provides a summary of the groundwater elevation data. Since the well screen in MW2 was installed relatively deep (between 32 and 47 feet below ground surface), groundwater was above the top of the screen in this well.

A groundwater elevation contour map was prepared based on the most recently recorded water levels (Figure 2-1).

2.2 SAMPLING METHODOLOGY

On June 21, 2006, four of the five monitoring wells on site (MW3, MW5, MW6, and MW7) were sampled using low-flow sampling methodology. Well MW2 was not sampled because the well screen was installed deep and groundwater was over 20 feet above the top of the screen. Before sampling, a bladder pump was slowly lowered into each well and positioned approximately 2 feet below the surface of the groundwater table. In addition, a water-level indicator was placed at the water surface to monitor water-level drawdown during purging. While purging at the lowest operational setting of the pump, which was approximately 100 milliliters per minute, the water level surface exceeded the maximum drawdown limit of 0.33 feet at wells MW5 and MW7.

Because a stabilized water level could not be achieved, even at very low purging rates, a passive, or minimum purge, sampling method was performed following the methodology presented in a U.S. Environmental Protection Agency (EPA) Groundwater Issue paper titled *Low Flow (Minimal Drawdown) Ground-Water Sampling Procedures* (Puls and Barcelona, 1996). The passive/minimal purge approach requires the removal of a minimum of three volumes of the sampling system from each well. The liquid volume of the sampling system consists of the volume of the pump's bladder, discharge tubing and flow through cell attached to the water quality meter. After purging the required volume at the lowest flow rate achievable for each well, a groundwater sample was collected.

To monitor groundwater conditions during purging, water-quality parameters were measured as follows: temperature, pH, electrical conductivity, turbidity, dissolved oxygen (DO), and oxidation/reduction potential (ORP). These measurements were recorded on the well sampling logs provided in Appendix A. After purging the required volume at the lowest flow rate

achievable for each well, a groundwater sample was collected. Groundwater samples were collected through new disposable polyethylene discharge tubing, which was connected to the bladder pump. Each sample was collected in the appropriate containers, labeled, and placed in a cooler with ice immediately after sample collection for delivery to the analytical laboratory.

All non-disposable down-hole equipment, such as the bladder pump and water-level indicator, were decontaminated before sampling each well.

2.3 SAMPLE ANALYSES

Groundwater samples were delivered by courier to EMAX Laboratories in Torrance, California, for analysis of TPH-d using EPA Method 8015B, VOCs using EPA Method 8260B, and PAHs using EPA Method 8270C. To continue evaluating the site for potential natural attenuation of groundwater, samples were analyzed for nitrate and sulfate by EPA Method 300.0. On-site analysis for ferrous iron [iron (II)] was completed using a Hach IR-18C field kit and documented for each well on the well sampling forms (Appendix A).

2.4 WASTE MANAGEMENT

All equipment decontamination water and groundwater generated from well purging were temporarily contained in Department of Transportation (DOT)-approved drums and stored on site. The drums were closed, marked, labeled, and located to minimize traffic hazards and discourage tampering. The wastewater drums were transported off site for disposal at a waste-permitted facility. The handling, management, transportation, and disposal of wastewater were conducted in accordance with state and federal laws and regulations. No wastes were stored at the site for more than 60 days. A copy of the waste manifest is provided in Appendix B.

3.0 GROUNDWATER MONITORING RESULTS

Groundwater flow and analytical results from the June 2006 sampling event are discussed in the following subsections.

3.1 GROUNDWATER FLOW DIRECTION

Groundwater elevations measured during the June 2006 event are presented in Table 2-1.

As shown on Figure 2-1, groundwater elevations at the site ranged from 284.25 feet above mean sea level (amsl) at MW2 to 288.26 feet amsl at MW7. The water level at MW2 was approximately 21.56 feet above the screened interval of the well; however, depths to water in MW3, MW5, MW6, and MW7 were all within the screened intervals of the wells.

Based on water levels measured for the June 2006 event, groundwater flows generally eastward (see Figure 2-1) with an approximate gradient of 0.048 feet per foot (ft/ft).

3.2 ANALYTICAL RESULTS

A total of four samples (plus a field duplicate, a trip blank, and an equipment rinsate sample) were collected during the June 2006 event and sent to EMAX Laboratories for analysis. A summary of groundwater sampling results is presented in Table 3-1 and further summarized on Figure 2-1.

TPH-d was detected in sample 10-14131-005, collected from MW7, and sample 10-14131-006, a duplicate sample from MW7. The reported concentrations of TPH-d were 0.95 and 1.0 milligrams per liter, respectively. Acetone, bromodichloromethane, chloroform, and dibromochloromethane were each detected in sample 10-14131-005 at estimated concentrations less than the reporting limits (J-flag). The duplicate sample, sample 10-14131-006, had detections of bromodichloromethane, chloroform, chloromethane, and dibromochloromethane, also at estimated concentrations below reporting limits (J-flag). Bromodichloromethane, chloroform, and dibromochloromethane are trihalomethanes, which are common byproducts of the dechlorination process for drinking water. Because MW7 is a new well, the tap water used to hydrate the bentonite seal is possibly a source of these analytes around this well. Other targeted VOCs, including benzene, toluene, ethylbenzene, and total xylenes (BTEX), were not detected in any of the wells. In addition, PAHs were not detected in any of the four monitoring wells.

As discussed in Section 2.3, samples from all wells were also analyzed for parameters to be used for evaluation of natural attenuation of groundwater. Laboratory analyses for nitrate and sulfate, field analyses for iron (II), and field measurements of DO and ORP were performed. These analytical results and field measurements are summarized in Table 3-1. Purging and sampling

data sheets with the recorded ORP and DO readings and iron (II) results for each well are provided in Appendix A.

The analytical results were successfully uploaded to the Water Board Geotracker database (Confirmation No. 8007905662). A copy of the laboratory analytical report and the chain-of-custody form is provided in Appendix C.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

This section summarizes the quality assurance and quality control results for the June 2006 groundwater sampling event.

All groundwater samples were collected and preserved in accordance with the *San Diego County Site Assessment and Mitigation Manual 2004* (DEH, 2004) and were delivered to the analytical laboratory within 24 hours of sample collection by a laboratory courier and analyzed within the method-specified analytical holding times. EMAX Laboratories, a state of California-certified and Naval Facilities Engineering Service Center-evaluated laboratory, performed the sample analyses.

One field duplicate (identified as 10-14131-006) was collected from monitoring well MW7. The relative percent difference (RPD) between the samples was 5 percent for TPH-d, 6 percent for bromodichloromethane, 2 percent for chloroform, and 10 percent for dibromochloromethane. The RPD for all other analytes could not be determined because other target analytes were not detected in either one or both of the samples collected from monitoring well MW7.

To assess potential cross-contamination of analytes during sample transport, a trip blank sample (identified as 10-14131-001) was sent with groundwater samples to the laboratory and analyzed for VOCs. Detectable levels of VOCs were not reported above the project reporting limits in the trip blank sample.

One equipment rinsate sample was also collected (identified as 10-14131-007) and analyzed for TPH-d, VOCs, and PAHs. A low concentration of chloroform was detected below laboratory reporting limits (J-flag). Given that no detections of chloroform were found above reporting limits in the collected samples, this chloroform detection is most likely a result of a laboratory artifact or contaminant. Detectable levels of TPH-d and other VOCs were not reported in the equipment rinsate sample, indicating the effectiveness of the decontamination procedure.

Method blanks, surrogate spikes, laboratory control samples (LCSs), and LCS duplicates (LCSDs) were analyzed to assess method accuracy and precision in accordance with the analytical method specifications. A set of matrix spike and matrix spike duplicate samples (10-14131-004) was provided to the laboratory during this sampling event. No detectable levels of TPH-d, VOCs, or PAHs were found in the method blanks. Percent recoveries in LCS, LCSD, and surrogates were well within the project-specified quality control acceptance limits. With the exception of naphthalene, which had an RPD of 36 percent, RPDs between the spiked duplicates were all within acceptance limits.

5.0 SUMMARY

Based on water levels measured for the June 2006 event, groundwater flows generally eastward (see Figure 2-1) with an approximate gradient of 0.048 ft/ft. Groundwater elevations at the site ranged from 284.25 feet amsl at MW2 to 288.26 feet amsl at MW7. The water level in MW2 was significantly above the screened interval of the well (over 20 feet), and MW2 was not sampled. The depths to water in the other four wells were within the screened intervals.

During the June 2006 event, TPH-d was detected in both samples collected from MW7. The J-flag (estimated) concentrations of acetone, bromodichloromethane, chloroform, chloromethane, and dibromochloromethane detected at MW7 were not above reporting limits. PAHs and other VOCs, including BTEX, were not detected in any of the wells.

This sampling event was the first of four consecutive quarterly events undertaken in order to support a case for site closure. SES-TECH will continue to execute this sampling scheme and make a recommendation concerning further corrective action, if appropriate, upon its completion.

6.0 REFERENCES

- Puls R. and M.J. Barcelona. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. April.
- San Diego County Department of Environmental Health, Land and Water Quality Division (DEH). 2004. San Diego County Site Assessment and Mitigation Manual 2004.
- SES-TECH, 2006. Final Corrective Action Plan for UST Site 14131, MCB Camp Pendleton. May.

TABLES

TABLE 2-1

SUMMARY OF GROUNDWATER ELEVATIONS UST SITE 14131, MCB CAMP PENDLETON, CALIFORNIA

Monitoring Well ID	Well Screen Interval (feet btoc)	Reference Point (toc) Elevation (feet amsl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet amsl)
			3/24/92	9.64	285.05
MW2	32 - 47	294.69	4/17/92	9.18	285.51
			6/19/06	10.44	284.25
			3/24/92	8.47	288.70
MW3	8 – 23	297.17	4/17/92	8.54	288.63
IVI VV 3	8 – 23	297.17	3/16/06	9.23	287.94
			6/19/06	9.32	287.85
			12/2/98	9.43	285.65
MW5	5 – 15	295.08	3/16/06	6.77	288.31
			6/19/06	8.38	286.70
			12/2/98	5.12	289.62
MW6	5 – 15	294.74	3/16/06	5.87	288.87
			6/19/06	7.95	286.79
MW7 ⁽¹⁾	5 – 15	295.99	6/19/06	7.73	288.26

Notes:

 $^{(1)}$ - Well installed after March 2006 sampling event

amsl - above mean sea level

btoc - below top of casing

MCB - Marine Corps Base

toc - top of casing

UST - Underground Storage Tank

TABLE 3-1

SUMMARY OF GROUNDWATER SAMPLING RESULTS UST SITE 14131, MCB CAMP PENDELTON, CALIFORNIA

								VOCs (μg/L)								PAHs	(µg/L)				N	atural At	enuation	Paramete	rs
Well ID	Date Sampled	Sample ID	mg/L	Benzene	Toluene	Ethylbenzene	Xylenes (total)	MTBE	Acetone	Bromodichloromethane	Chloroform	Dibromochloromethane	Chloromethane	Acenaphthene	Anthracene	Benzo[a]anthracene	Chrysene	Fluorene	Naphthalene	Phenanthrene	Pyrene	og Nitrate-N	Sulfate Sulfate	$\overset{\texttt{g}}{\neg}_{\Gamma} \text{Iron (II)}$	ਤੇ ਨੂੰ Dissolved Oxygen	N ORP
1992 Ini	tial Site Inve	stigation																								
MW1	03/24/92	MW14131-1	ND	ND	ND	ND	ND																			
	04/17/92		ND	ND	ND	ND	ND																			
MW2	03/24/92	MW14131-2	ND	ND	ND	ND	ND																			
	04/17/92		ND	ND	ND	ND	ND																			
MW3	03/24/92	MW14131-3	ND ND	ND ND	ND ND	ND ND	ND ND																			
1998 Site	e Investigation	on .	ND	ND	ND	ND	ND																			
MW4	12/02/98	MW14131-4	6.3	0.7J	ND	1.0J	1.3J	ND	41J	NA	ND	NA	NA	5.0J	0.5	0.4	0.1J	8.3	23	0.2J	0.75					
MW5	12/02/98	MW14131-5	ND	ND	ND	ND	ND	ND	31J	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND					
MW6	12/02/98	MW14131-6	ND	ND	ND	ND	ND	3J	ND	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND					
Post US	Γ Soil Cavity	Excavation Groundy	vater Sar	npling E	vents																					
MW3	03/16/06	0004-136	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
	06/21/06	10-14131-002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	46.8	1460	0.0	1.56	138
MW5	03/16/06	0004-135	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
	06/21/06	10-14131-003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.19	131	0.0	1.56	100
MW6	03/16/06	0004-137 0004-138 (Dup)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND					
IVIVVO	06/21/06	10-14131-004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.67	81.2	0.0	0.86	82
		10-14131-005	0.95	ND	ND	ND	ND	ND	7.2J	0.48J	0.61J	0.29J	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.9	241	0.0	1.20	99
MW7	06/21/06	10-14131-006 (Dup)	1.0	ND	ND	ND	ND	ND	ND	0.51J	0.62J	0.32J	0.23J	ND	ND	ND	ND	ND	ND	ND	ND	6.8	240			
	Wate	r Quality Objectives	0.1 ⁽¹⁾	1	150	680	1750	13	(2)	100 ⁽³⁾	100 ⁽³⁾	100 ⁽³⁾	(2)	(2)	(2)	(2)	0.2 ⁽⁴⁾	(2)	(2)	1	(2)	10	500 ⁽¹⁾	(2)	(2)	(2)

Notes:

(1) - Secondary taste and odor objective

(2) - No established water quality objective

(3) - Total trihalomethanes

(4) - Proposed primary MCL

-- - Not analyzed

μg/L - micrograms per liter

Dup - duplicate sample

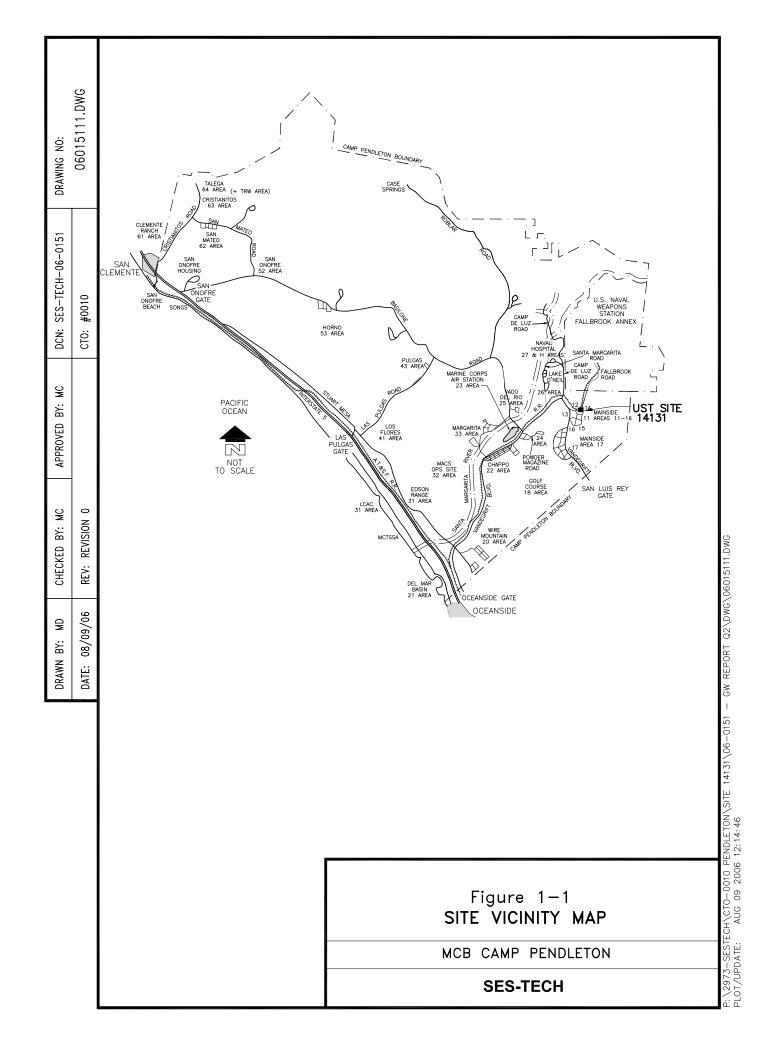
iron (II) - ferrous iron

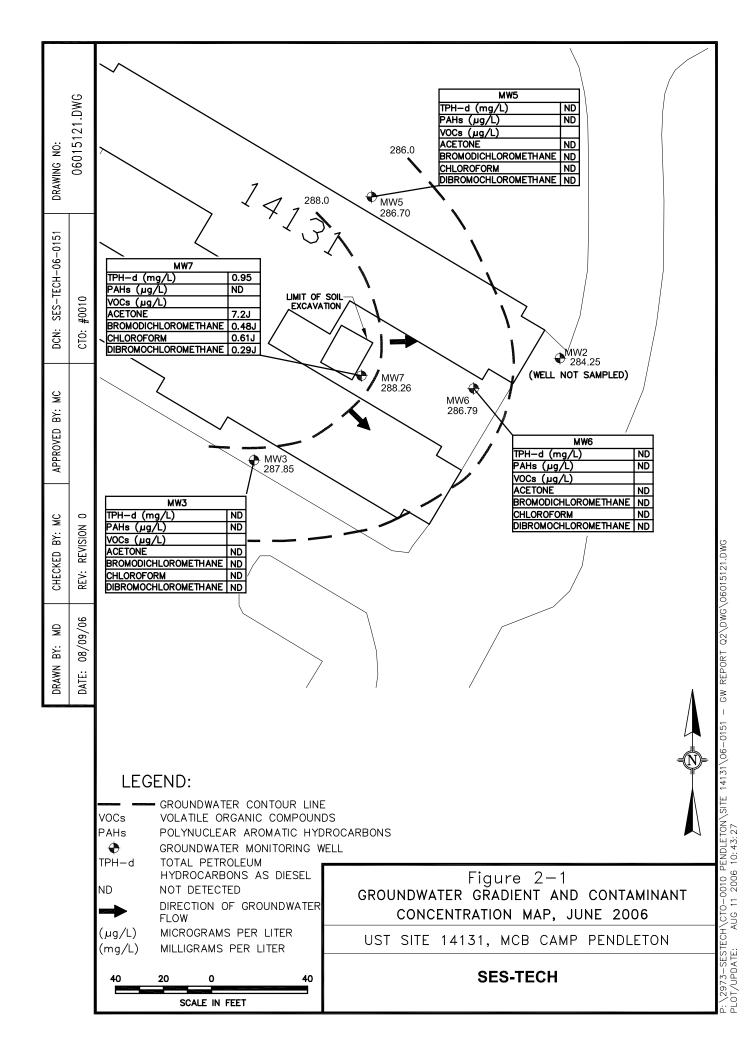
J - estimated value

MCB - Marine Corps Base

mg/L - milligrams per liter

MTBE - methyl tert-butyl ether


NA - not available


ND - not detected above project reporting limits

ORP - oxidation/reduction potential PAH - polynuclear aromatic hydrocarbon

TPH-d - total petroleum hydrocarbons quantified as diesel

UST - Underground Storage Tank VOC - volatile organic compound **FIGURES**

APPENDIX A WELL SAMPLING LOGS

SES-TECH			Page of
FIEL	D WATER LEVEL	MEASUREMEN'	TS ·
Date: 6 191	JOU yant J. Sagur Hitt Meaure Sunny	Project Name: UST Project OFS: 20 ement Device: Solf Comments	5th 14131
Well ID MW3 MW7 MW6	Depth to Water from Measuring Point (feet) 9.32 1.73 7.95	Depth to Sediment from Measuring Point (feet)	Comments
MWZ MW5	10.44 8.38	46.97	

						····			
	LO	W-FLOW	PURG	<u>ING AI</u>	<u>ND SAN</u>	<u>IPLING</u>	DATA	SHEE"	Ī
Proie	ct Name:	Camor	endleto	n/1413	Well	Number:	Mu	153	uno 6/2/100
		2973.			-	uipment:	Honib	2 02	2_
,		(0/2/10					10-14131-		Time: 0954
Site En		W3 J	B			ontractor:			
		· · · · · · · · · · · · · · · · · · ·							
Reference	e: Top of Ca	asing	Before	After	Total '	Volume Pu	ırged (mL):	15	00
Depth to \	Water (ft)		9.25	9.48	·				
Depth of \			14.28	-22.76	>			(0.441.1)	
H '	Top of Scre	en (ft)	- 2 5	•		System Vo	olume (mL) : where	= (2.4*H)+	470
Screen Le Pump De			2111/	•	2.4mL/ft = t	ubina volui	me per foot	(1/8" I.D.)	
Pump Ra			100 muln	hin		_	of tubing in		
8 -	ump Rate		100my	min	470 mL = E	Bladder volu	ıme + Flowt	hru cell vo	lume
System V	olume (mL))							
		0	Dissolved	Temp.	ODD.	Turklalika	Donath to	Cum.	
Time	pН	Conductivity (umhos)	Oxygen	(°C)	ORP (mv)	Turbidity (NTU)	Depth to Water (ft)	Volume	Comments
0022		(41111100)	(mg/L)	(0)	(,	()		(mL)	<u> </u>
U433	-7 2 7	5570	2.72	70/11	1/100	02	0120	2/2	Sumpon
0136	7.23	0020	2.18	27/2	190	00	9.30	300	Clear nowak
0931	7.23	2070	1 5	226	1110	9,5	9.09	600	11 7
M42 W115	1.60	0520	1653	2210	170	116	0 112	900	11 (1
0440	7.20	7540	1001	22/1	170	ria -	91,75	1200	9/1
0440	7.23	5440	1.56	22.61	138	117	1040	1500	Stillo
(MC)									ource
NO J									
				(1)					
			<u></u>		A		7		
					- 3 -				
Stability:	± 0.2 units	± 5 ⁻ %	± 0.2 mg/L	±3%	± 20 mV	± 10 %		<i>t.</i>	
Cabiny.	_	4070	_	2070	,,,,,,				
Hach Fe ^{2⁴}	· 0.	0							
HACITY ,		<u> </u>							
Samples :	vore collect	ted directly fro	m numn un	lees other	wise noted				
Jampies V	Mete COHEC	iou uireolly 110	an baiab ais	1699 00161	mae HV(CU.				

	LO	W-FLOW	PURG	ING A	ND SAN	<u> IPLING</u>	<u> DATA</u>	SHEE	
Proje	ct Name:	Camp Pen	dieton	11413	Well	Number:	MW)5	
		2973.			Eq	•	Horit		-10
	Date:	62106							Time: 1124
Site Eng	gineer(s):	lis,	UB		. Co	ontractor:	Dre	<u> </u>	
Reference	e: Top of Ca	asing	Before	After	Total '		urged (mL):		<u>xo</u>
Depth to V		•	8.40	8.80		496.4	= 2.4	XIID	+470
Depth of V			14.25	3					,
1 '	Top of Scree	en (ft)	~~~			System vo	olume (mL) : where	= (2.4*H)+4	470
Screen Le Pump Der		2		•	2.4mL/ft = 1	tubina volu:	me per foot	(1/8" I.D.)	!
Pump Rat		• •		Llmin		-	of tubing in		!
Sample P	Pump Rate /olume (mL))		Umin	470 mL = B	-	ume + Flowt		lume
		Conductivity	Dissolved	Temp.	ORP	Turbidity	Depth to	Cum.	
Time	pН	(umhos)	Oxygen	(°C)	(mv)	(NTU)	Water (ft)	Volume (mL)	Comments
11/20			(mg/L)					(1112)	Dimpon
1103	789	1590	4.56	22.32	119	53.8	8,55	300	Clean roose
1106	H45	11170	1.73	21.13	113	565	8.61	100	111
11/9	17.41	1150	152	21.70	105	519	B.72	900	ч
1112	742	1180	1.55	2210	102	48.4	8.76	1200	†ı
1115	7.44	1180	1.54	21.65	FIOI	48.6	2.78	1500	t]
1/18	7.43	1170		22.41	100	46.2	8.80	1800	ħ
1121									Stable
1124									Collect
									Samo
					,		-		
				C					
						PW			
		,			$X \subseteq X$				
Stability:	± 0.2 units	± 5 %	± 0.2 mg/L	±3%	± 20 mV	± 10 %			,
	-								
Hach Fe ²⁺	<u>+ 0.(</u>	<u>) </u>							•
Samples v	were collect	ted directly from	m pump un	iless other	wise noted.				
									1

	LO	N-FLOW	PURG	ING AI	ND SAN	IPLING	DATA	SHEE	
Proje	ct Name:	Camo Re	nduto	ท	Well	Number:	Mu	06	
		2973,			•	uipment:	Hon	ba_	0-22
	_	6/21/01	_		Sa	ample ID:	10-1413	31-004	Time: 1307
Site Eng	gineer(s):	wa,	<u>UB</u>		Co	ontractor:	'One		
Reference	: Top of Ca	asing	Before	After	Total	Volume Pu	ırged (mL):	jec	<u> </u>
Screen Le Pump Der Pump Rat Sample P	Vell (ft) Top of Screength (ft) oth (ft)			8.64 Sin Jania		ubing volui H = length	olume (mL) : where me per foot (of tubing in ume + Flowt	(1/8" I.D.) feet	
Time	рН	Conductivity (umhos)	Dissolved Oxygen (mg/L)	Temp. (°C)	ORP (mv)	Turbidity (NTU)	Depth to Water (ft)	Cum. Volume (mL)	Comments
1243									Dunpon
1246	7,59	738	3.62	225	85	0.0	8.46	300	Clearing
1249	7.57	739	105	1236	86	0.0	8,50	600	et te
1252	7.58	739	1,08	2250	85	0.0	8.55	900	٠, ٠,
1255	7.58	732	0.96	2229	83	0,0	8.56	1200	
1250	7.59	736	0.86	22.34	82	1.2	8.60	1500	14 -1
1301	7.51	736	0.86	22,35	82	0,0	8.64	1800	(, ,)
1304									stable
1307									Collection
									(
Stability:	± 0.2 units	± 5~%	± 0.2 mg/L	±3%	± 20 mV	± 10 %			
Hach Fe ²	0.0)	1	nclue	lo n	ns (m	az		
Samples v	vere collect	ed directly fro	m pump un	less other	wise noted.				

	LUV	A-LFOAA	PUKG	ING AI	AN SAN	<u> IPLING</u>	DATA	<u> Shee</u>	
•	umber: _ Date: _	, 	XO100	on IL	Eq Sa	uipment: ample ID:	Mu Horik 10-14131 10-1413	-00S	22 Time: 1448 1453
Reference: 1	Top of Ca	sing	Before	After	Total '	Volume Pu	ırged (mL):	18	<u></u>
Depth to Wa Depth of We Depth to Top Screen Leng Pump Depth Pump Rate Sample Pun System Volu	ell (ft) p of Scree gth (ft) n (ft) mp Rate		7.62 14.86 25.0 10' 9.5 100 mi 100 mi	4min	2.4mL/ft = t	System Vo tubing volui H = length	olume (mL): where me per foot (of tubing in ume + Flowt	= (2.4*H)+ (1/8" I.D.) feet	
Time	pН	Conductivity (umhos)	Dissolved Oxygen (mg/L)	Temp. (°C)	ORP (mv)	Turbidity (NTU)	Depth to Water (ft)	Cum. Volume (mL)	Comments
1423 -									Dunson
1427 -	7.38	3310	3.44	22.66	100	98.5	7.68	300	May roods
1430	7.35	3310	2.37	22.73	105	1000	7.74	600	τ(
1433	7.37	3330	1.81	2258	106	104.0	7.85	900	
1436	7.38	3180	1.28	22.55	103	27.7	7.87	1200	11
1439 -	7.44	3080	1.24	22.58	101	0.0	7.90	1500	ŧη
1442 -	145	2020	1.20	22.57	99	00	8.00	1800	l į
1445 -			1.00					18	Stable
1448 -									Colketsame
1453 -									collect Dun
1930									wife in

Stability: ±	0.2 units	± 5 %	± 0.2 mg/L	±3%	± 20 mV	± 10 %			
Hach Fe ²⁺	O.	ed directly fro	m pump un	less other	wise noted.				

APPENDIX B NON-HAZARDOUS WASTE MANIFEST

NON-HAZARDOUS WASTE MANIFEST

<u> </u>	ease	print or type (Form designed for use on elite (12 pitch) typewriter)						
To the second		NON-HAZARDOUS WASTE MANIFEST 1. Generator's US EPA ID No. C A 2 1	70023533		Manifest Document No.	63002	2 Page 1 of	1.
		3. Generator's Name and Mailing Address AC/S Environmental Security					·	
	1	P.O. Box 555008 Camp Fendleton, CA 92055~5008						
0		4 Generator's Phone (760-1725-4321 Attn: Nata De	leston					
		5. Transporter 1 Company Name 6. General Environmental Mgmt Inc. C	US EPA ID Number A D 9 8 3 6 4 9 1	ននេល	A. State Trans		326-101	-
28.00	ł	7. Transporter 2 Company Name 8.	US EPA ID Number		B. Transporter C. State Trans		320-101	
					D. Transporte			
Section 2		9. Designated Facility Name and Site Address 10. U.S. Ecology Corp.	US EPA ID Number		E. State Façili	ty's ID		
Kenney or a		Highway 95 - 12 miles south of Beatty Beatty, NV 89003			F. Facility's Pt		028 384	_
9	1	11. WASTE DESCRIPTION	V T 3 3 0 0 1 0 0	12. Co		300	239 394	
of Common				No.	Туре	Total Quantity	Unit Wt./V	1
10		a. Non hazardous liquid (Well Water)				20 44	3	
1000		uon nazardona lidard (meri macer)		out	рм	00473	-	G
	G	b	***************************************			1000 Till	105	
l	G E N							
ľ	E R	c.						
	A T	.	•					
- [1	O .			ļ				
1	R	d.						
Z.		G. Additional Descriptions for Materials Listed Above 11a) x55g Well Water-Approval			H. Handling C	odes for Wastes Listed Abov	/e	
C Cabring Car.			•					
200		~						
N W. SERRES OF THE		15. Special Handling Instructions and Additional Information Emergency Phone: (800) 326-1011 (GEM)		~				
Book		Emergency Phone: (800) 326-1011 (GEM)	do#20165 Assista	nt Ch	ief.Cam	n Pandlaton	CA 9206	در در
	5,1	Site: US Marine Corps-Camp Penleton-Bl		*****				
All Comments		16144,2389, 14121 (14131) 14137,4	3402		5410	#16494	7	
18.00			n j 29 429 299		<u> </u>	<u> </u>	1/	
Water Vo		16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipme in proper condition for transport. The materials described on this manifest are not seen.	ent are fully and accurately described tubject to jederal hazardous waste reg	and are in gulations.	all respects	_ ^	11211	
		Wendy Brugart	(Sen	پلسسر میلیوس	₹	TEECING	Date	ويد
TO VOICE		Printed/Typed Name Try DN/11	Signature	1		Mon		Year
F	ୀଷ୍ଟ T	17. Transporter 1 Acknowledgement of Receipt of Materials 11306	2 Alfal W	٠	21 K.L		<u> 47.18</u>	O
	TRANSPORTER	Printed/Typed Name	Signature		200	Mon	Date th Day	Year
	S	Rudy Negrete	Thong Me			ر ن	713 0	\$
	3 -	18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	1 Sizzativa				Date	
		r linew typeu trane	Signature			Mon	h Day 1	Year
Γ	F	19. Discrepancy Indication Space						
Ų,	A							
	 -	20. Facility Owner or Operator, Certification of receipt of the waste materials covered by	y this manifest, except as noted in iter	m 19.	***************************************			
	- -	Printed/Typed Name	Signature	······································			Date -	
ŀ	1	, чись , урод тапе	Signature			Mont	n Day Y	rear
<u></u>			L					

APPENDIX C

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY FORM

NUMBER 20020

TETRA TECH 1230 Columbia Street, Salte 500 San Diego, CA 92101 (619) 234-8696

CHAIN-OF-CUSTODY RECORD

DECEMBER 18 18 18 18 18 18 18 18 18 18 18 18 18		PLINCHASE ORDER NO	ON 2		-	A NT A T W/C	uganioad sask iv iv	LABORATORY NAME		
Can Grall to		1	180		 I	AVACA			Project Information	mation
PROJECT LOCATION		PROJECT NO				70°C		<u> </u>	Section Do not submit to	ı mit to
SAMPLER NAME N POT LA BALL LO LA		AIRBILL NUMBER				SIOS FICE VIE	SV.	LABORATORY ID (FOR LABORATORY)	Laboratory	əry
PROJECT CONTACT C D v D C V	7 707	PROJECT CONTACT PHONE NUMBER	T PHONE NUM	J588		' s			- Literature and the second and the	
SAMPLE ID	DATE COLLECTED	ТІМЕ	K	LEVEL Y	H < H	AOC		COMMENTS	LOCATION	DEPTH Q
10-14(31-001	2011219	Q18	7	X	े द	7 -		2	TRipBlank	
		h.Sk0)	9	<u>√</u>	्य	メイイメ			14131-MW3	
	ţ	ナガニ	9	7	23	メイメイ			1413-MU35	
٠,	1	1307	>	X		アメメメ		MS/MSD	14131-MW6	
-		146	9	(1) X	102	イズスメ			TWM-18HI	
900-14141-0	5241 20121	153	9	X 3	02	XXXX		i militar ministrativo (i.e.	TW31-16WT	
1014131-101	053 80174	1530		7 1	30	XXX	3 3 4 4		EgwoRing	/
					-		*****			
		e.								
RELINGUISHED BY (Signaumb)	DATE 1422/05	RECEIVED BY (Signature)	gnature)		BORATO	LABORATORY INSTRUCTIONS/COMMENTS	S/COMMENTS	Andrew State of the Control of the C	SAMPLING COMMENT:	
	143 O	COMPANY	4 MM X					er der de de de la company	I	
RELINQUÍSHED BY (Signature)	DATE	RECEIVED BY (Signature)	gnature)	00	MPOSITE	COMPOSITE DESCRIPTION			**************************************	
COMPANY	ТІМЕ	COMPANY				·				
RELINQUISHED BY (Signature)	DATE	RECEIVED BY (Signature)	gnature)	SA T	SAMPLE CONDI	ONDITION UPON URE:	SAMPLE CONDITION UPON RECEIPT (FOR LABORATORY) TEMPERATURE: SAMPLE CONDITION: INT	RATORY) 4: I INTACT I BROKEN		
COMPANY	ТІМЕ	COMPANY		y	COOLER SEAL:	AL: INTACT	CT D BROKEN			
***************************************				i	:					

TABLE OF CONTENTS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

SDG:

06F248

SECTION PAG				
Cover Letter, CO	1000 – 1004			
GC/MS-VOA	METHOD 5030B/8260B	2000 – 2124		
GC/MS-SVOA	METHOD 3520C/8270C SIM	3000 – 3091		
GC-VOA	**	4000 –		
GC-SVOA	METHOD 3520C/8015B	5000 - 5044		
HPLC	**	6000 —		
METALS	**	7000 –		
WET	METHOD 300.0	8000 - 8067		
OTHERS	**	9000 –		
	The second secon			

^{** -} Not Requested

Torrance, CA 90501 Tel: (310) 618-8889

Fax: (310) 618-0818

Date: 07-07-2006

EMAX Batch No.: 06F248

Attn: Nick Weinberger

SES-TECH 1940 E. Deere Avenue, Suite 200 Santa Ana CA 92705

Subject: Laboratory Report

Project: Camp Pendleton, UST Site 14131

Enclosed is the Laboratory report for samples received on 06/22/06. The data reported include:

Sample ID	Control #	Col Date	Matrix	Analysis
10-14131-001 10-14131-002	F248-01 F248-02	06/21/06 06/21/06		VOLATILE ORGANICS BY GC/MS VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM ANIONS BY IC
10-14131-003	F248-03	06/21/06	WATER	VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM ANIONS BY IC
10-14131-004	F248-04	06/21/06	WATER	VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM ANIONS BY IC
10-14131-004MS	F248-04M	06/21/06	WATER	VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM ANIONS BY IC
10-14131-004MSD	F248-04S	06/21/06	WATER	VOLATILE ORGANICS BY GC/MS TPH DIESEL

Sample ID	Control #	Col Date	Matrix	Analysis
10-14131-005	F248-05	06/21/06	WATER	SEMIVOLATILE ORGANICS SIM ANIONS BY IC VOLATILE ORGANICS BY GC/MS TPH DIESEL
10-14131-006	F248-06	06/21/06	WATER	SEMIVOLATILE ORGANICS SIM ANIONS BY IC VOLATILE ORGANICS BY GC/MS TPH DIESEL
10-14131-007	F248-07	06/21/06	WATER	SEMIVOLATILE ORGANICS SIM ANIONS BY IC VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

C 2 Pre,

Kam Y. Pang, Ph.D. Laboratory Director NUMBER 20020

TETRA TECH

1230 Columbia Street, Spike 500 San Diego, CA 92101 (619) 234-8696

CHAIN-OF-CUSTODY RECORD

06F248

LAPORAVOS SE, I COMMENT クるドン大 MSIM LABORATORY ID FOR LABORATORY) LABORATORY NAME SAMPLE CONDITION: D-INTACT SAMPLE CONDITION UPON RECEIPT (FOR LABORATORY)
TEMPERATURE: 3, 4° 5 SAMPLE CONDITION: 0-18/12
COOLER SEAL: 2-18/1ACT 0 BROKEN ANALYSES REQUIRED LABORATORY INSTRUCTIONS/COMMENTS COMPOSITE DESCRIPTION 1588 LEVEL NO OF CONTAINER <u>و</u> 780 ی 0 21. (ECEIVED BY (Signature) 3 PURCHASE ORDER NO 于龙 TIME 4211 1124 HOUR ONSY 61210c (8940 621140120 0531 00119 1307 COMPANY 122/06 on ro Galos COLLECTED 1 Teinhornau Brown Brugest H 19-14131-006 7/1014131-007 4-14131-0014 10-14121-005 2/10-14131-002 3/10-14151-003 "KOJECT LOGATION 100-14131-001 BY (Signature) RELINQUISHED BY (Signature) ENAX SAMPLE ID STOK COMPANY

SAMPLE RECEIPT FORM I

	·				
Туре	of Delivery	Delivered By/Airbill		ECN	06F248
EMAX Courier		SEFWE		Recepient	Illina
Client Delivery				Date	6-2206
Third Party	**************************************			Time	(633
	<u> </u>				
		COC Inspection			
☐ dient Name		Sampler Name		Sampling	Date/Time/Location
Address		Courier Signature/Date/Time		<u>_</u>	
' Client PM/FC				Añalysis f	Required
		☐ TAT		Matrix	
Tel #/Fax #		Sample ID		Preservat	
Safety Issues	None	High Concentrations expected		Superfund	d Site Samples
Comments:	Rad Screening Requi	red			
					,
		Packaging Inspection			
Container	Cooler	Вох			
Condition	Custody Seal	☐ Intact	Damag	od	
Packaging	Bubble Pack	<u> </u>	- Sufficie		Dola sta Bell
Temperatures	Cooler 1 3.3	Styrofoam		IIL	Cooler 4
remperatures		Cooler 2 3 · 8 · C	Cooler 3		
	Cooler 5	Cooler 6	Cooler 7	· · · · · · · · · · · · · · · · · · ·	Cooler 8
_	Cooler 9	Cooler 10	Cooler 1	1	Cooler 12
Comments:	······································				
LSCID	Client ID	Discrepancy		·	Corrective Action
					
		 			
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
					P-1
	<u> </u>				
COID . 1 . 1 . 2	1-0-4				
SCID Lab Samp	ole Container ID				
REVIEWS <	JAN1		<u> </u>	_	(m) 1) 1
Sample Labeling	DALKM	SRF	ANT	PM	1 IsCVO
Date	6/22/00	Date 6	22/16	Date	6/22/06
		$\overline{7}$			- 0/20/00
					• •

REPORTING CONVENTIONS

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out .

DATES

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14131

METHOD 5030B/8260B VOLATILE ORGANICS BY GC/MS

SDG#: 06F248

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

SDG:

06F248

METHOD 5030B/8260B VOLATILE ORGANICS BY GC/MS

Seven (7) water samples were received on 06/22/06 for Volatile Organic analysis by Method 5030B/8260B in accordance with USEPA SW846, 3rd edition.

1. Holding Time

Analytical holding time was met.

2. Tuning and Calibration

Tuning and calibration were carried out at 12-hour interval. All QC requirements were met.

3. Method Blank

Method blank was free of contamination at half of the reporting limit.

4. Surrogate Recovery

Recoveries were within QC limits.

5. Lab Control Sample/Lab Control Sample Duplicate

All recoveries were within QC limits.

6. Matrix Spike/Matrix Spike Duplicate

Sample F248-04 was spiked. All recoveries were within QC limit.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

	GC/MS
إدا	₩
3 CHRONICLE	ORGANICS
LAB	VOLATILE

Client	lient : SES-TECH					10 99 10 11 11 11 11 11 11 11	# 			SPC 370 · OR 2003
Project	: CAMP PENDLETON,		13.1						Instrument 10	
					WAT	WATER				
Client		Laboratory Dilution	Ditution	Ж	Analysis	Extraction	Sample	Calibration Prep.	Prep.	
Sample ID		Sample ID	Factor	Moist	Datelime	DateTime	Data FN	Data FN	Batch	Notes
		E 1 E E 1 E E E E E	1 1 1						1 1 1 1 1	
MBLK1W		V001F47a		ΝA	06/24/0614:22	06/24/0614:22	RFV605	REV408	V001F47	Method Blank
LCS1W		V001F47L		NA	06/24/0612:27	06/24/0612:27	RFV602	REV408	V001F47	Lab Control Sample (LCS)
LCD:¥		V001F47C		N.	06/24/0613:05	06/24/0613:05	RFV603	REV408	V001F47	LCS Duplicate
10-14151-001	- (F248-01	,-	¥.	06/24/0615:01	06/24/0615:01	RFV606	REV408	V001F47	Field Sample
10-14:31-002	7 1	F248-02		¥¥	06/24/0615:39	06/24/0615:39	RFV607	REV408	V001F47	Field Sample
10-14731-00	~1 ·	F248-03		N.A	06/24/0616:17	06/24/0616:17	RFV608	REV408	V001F47	Field Sample
10-14151-00	. α ·	F248-05	,	₩	06/24/0616:55	06/24/0616:55	RFV609	REV408	V001F47	Field Sample
10-14151-00	. 0	F248-06	-	MA	06/24/0617:34	06/24/0617:34	RFV610	REV408	V001F47	Field Sample
10-14151-007	· ·	F248-07	-	¥	06/24/0618:12	06/24/0618:12	RFV611	REV408	V001F47	Field Sample
10-14151-004	· ·	F248-04	_	Ϋ́	06/24/0619:29	06/24/0619:29	RFV613	REV408	V001F47	Field Sample
10-14131-00	0 E 7	F248-04M	-	NA	06/24/0620:07	06/24/0620:07	RFV614	REV408	V001F47	Matrix Spike Sample (MS)
USM400-16141-01	100E	F248-04S		M.A	06/24/0620:45	06/24/0620:45	RFV615	REV408	V001F47	MS Duplicate (MSD)

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

Client : SES-TECH Date Collected: 06/21/06
Project : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06
Project No. : 06F248 Date Extracted: 06/24/06 15:01
Per ID: 10-14131-001 Date Analyzed: 06/24/06 15:01
Dilution Factor: 1

 Lab File ID: RFV606
 Matrix
 : WATER

 Ext Btch ID: V001F47
 % Moisture
 : NA

 Calib. Ref.: REV408
 Instrument ID
 : T-Q01

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND .	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ИD	.5	.2
BROMOD I CHLOROMETHANE	ND	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	. 5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
1,3-DICHLOROPROPENE	ND	.5	.2
ROMOCHLOROMETHANE	ND	5	.2
ETHYLBENZENE	ND	.5	.2
XYLENES	ΝĎ	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ŊD	.5	2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
CURROCATE BARAMETERS	% DECOVEDY	OC LIMIT	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1.2-DICHLOROETHANE-D4	106	65 - 135
TOLUENE-D8	102	75 - 125
BROMOFLUOROBENZENE	105	75 - 125

R.L.: Reporting limit

* : Out of QC

E : Exceeded calibration range

B : Found in associated method blank

J : Value between R.L. and MDL

: Value between R.L. and MDL
 : Value from dilution analysis

∘ o. : Diluted out

Client : SES-TECH
Project : CAMP PENDLETON, UST SITE 14131
Proph No. : 06F248 Date Collected: 06/21/06 Date Received: 06/22/06 Date Extracted: 06/24/06 15:39 Date Analyzed: 06/24/06 15:39 e ID: 10-14131-002 Dilution Factor: 1 Samp ID: F248-02 : WATER Matrix Lab File ID: RFV607 % Moisture : NA Ext 8tch ID: V001F47 Instrument ID : T-001 Calib. Ref.: REV408

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
1.1.1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	. 2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMOD I CHLOROMETHANE	ND	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	. 5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
1.3-DICHLOROPROPENE	ND	.5	.2
ROMOCHLOROMETHANE	ИĎ	5	.2
ETHYLBENZENE	ND	.5	.2
XYLENES	ND	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	. 5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
1504 Mile Methic Willer			

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1.2-DICHLOROETHANE-04	103	65 - 135
TOLUENE-D8	99	75 - 125
BROMOF LUOROBENZENE:	100	75 - 125

R.L.: Reporting limit

* : Out of QC

E : Exceeded calibration range

B : Found in associated method blank

J : Value between R.L. and MDL

D : Value from dilution analysis

o. : Diluted out

Date Collected: 06/21/06 Client : SES-TECH
Project : CAMP PENDLETON, UST SITE 14131
R ho. : 06F248 Date Received: 06/22/06 Date Extracted: 06/24/06 16:17 Date Analyzed: 06/24/06 16:17 e ID: 10-14131-003 Dilution Factor: 1 Lu- Samp ID: F248-03 : WATER Lab File ID: RFV608 Matrix % Moisture Ext Btch ID: V001F47 Instrument ID : T-001 Calib. Ref.: REV408

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
4 4 4 TRYON ODOSTUANS	ND	5	.2
1,1,1-TRICHLOROETHANE	ND	1	.2
1,1,2,2-TETRACHLOROETHANE	ND	5	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	.5	.2
1,2-DICHLOROETHANE	ND	5	.2
1,2-DICHLOROPROPANE	ND	50	.2
METHYL ETHYL KETONE	ND	50	5
2-HEXANONE 4-METHYL-2-PENTANONE (MIBK)	ND	50	5
	ND	50	5
ACETONE	ND	.5	.2
BENZENE BROMODICHLOROMETHANE	ND	5	.2
	ND	5	.3
BROMOFORM BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	. 5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
-1,3-DICHLOROPROPENE	ND	.5	.2
ROMOCHLOROMETHANE	ND	5	.2
ETHYLBENZENE	· ND	.5	.2
XYLENES	ND	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ND	٠5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER .	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
SONNOSITE THE PARTY		
1,2-DICHLOROETHANE-D4	103	65-135
TOLUENE-D8	98	75 - 125
BROMOFLUOROBENZENE	100	75 - 125

R.L.: Reporting limit

* : Out of QC

E : Exceeded calibration range

B : Found in associated method blank

J : Value between R.L. and MDL

D : Value from dilution analysis

o. : Diluted out

Date Collected: 06/21/06 : SES-TECH ject : CAMP PENDLETON, UST SITE 14131 No. : 06F248 Date Received: 06/22/06 Project Date Extracted: 06/24/06 19:29 Date Analyzed: 06/24/06 19:29 e ID: 10-14131-004 Dilution Factor: 1 Lau Samp ID: F248-04 Matrix : WATER Lab File ID: RFV613 : NA % Moisture Ext Btch ID: V001F47 Instrument ID : T-001

MDL Rt. RESULTS (ug/L)(ug/L)(ug/L) **PARAMETERS** .2 5 1,1,1-TRICHLOROETHANE ND . 2 ND 1,1,2,2-TETRACHLOROETHANE .2 5 ΝD 1,1,2-TRICHLOROETHANE .2 5 1,1-DICHLOROETHANE ND 5 .2 1,1-DICHLOROETHENE ND .2 .5 ND 1,2-DICHLOROETHANE 5 1,2-DICHLOROPROPANE ND .2 ND 50 METHYL ETHYL KETONE 50 5 ND 2-HEXANONE 5 50 4-METHYL-2-PENTANONE (MIBK) ND 5 50 ND ACETONE .2 ND .5 BENZENE **BROMODICHLOROMETHANE** ND 5 .3 ND **BROMOFORM** . 2 5 ND BROMOMETHANE .2 .5 CARBON TETRACHLORIDE ND .2 ND 5 CHLOROBENZENE .2 5 ND CHLOROETHANE ,2 ND CHLOROFORM .2 5 ND CHLOROMETHANE ٠2 5 ND CIS-1,2-DICHLOROETHENE .2 .5 1,3-DICHLOROPROPENE ND 5 .2 ND COMOCHLOROMETHANE .2 ND .5 ETHYLBENZENE .2 NO XYLENES .2 ND MTBE .5 5 ND METHYLENE- CHLORIDE .2 ND STYRENE .2 5 ND **TETRACHLOROETHYLENE** .2 ND TOLUENE TRANS-1,2-DICHLOROETHENE ND .2 .5 ND TRANS-1,3-DICHLOROPROPENE 5 .2 ND TRICHLOROETHENE 50 .5 ND VINYL ACETATE .2 .5 ND VINYL CHLORIDE 20 5 ND TERT-BUTYL ALCOHOL 5 .2 DIISOPROPYL ETHER ND 5 . 2 ND ETHYL TERT-BUTYL ETHER 5 ND TERT-AMYL METHYL ETHER

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1,2-DICHLOROETHANE-D4	105	65-135
TOLUENE - D8	94	75-125
RROMOFLUOROBENZENE	96	75 - 125

R.L.: Reporting limit

: Dut of QC

Calib. Ref.: REV408

: Exceeded calibration range : Found in associated method blank : Value between R.L. and MDL : Value from dilution analysis

Diluted out

Date Collected: 06/21/06 : SES-TECH Date Received: 06/22/06
Date Extracted: 06/24/06 16:55
Date Analyzed: 06/24/06 16:55 Dilution Factor: 1 : WATER : NA Matrix % Moisture Instrument ID : T-001

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	. 2
1,1-DICHLOROETHANE	ND	. 5 . 5	.2
1,1-DICHLOROETHENE	ND	· 5	٠٤
1,2-DICHLOROETHANE	ND	.5	٠٤
1,2-DICHLOROPROPANE	ND	5	2 2 2 2 2 5 5 5 5 2
METHYL ETHYL KETONE	ND	50	. 2
2-HEXANONE	ND	50	2
4-METHYL-2-PENTANONE (MIBK)	_ND .	50	2
ACETONE	7.2J	50	3
BENZENE	ND .	.5	.2
BROMODICHLOROMETHANE	.48J	2	.3
BROMOFORM	ND	2	.2
BROMOMETHANE	ND	E	.2
CARBON TETRACHLORIDE	ND	.7	.2
CHLOROBENZENE	ND	2	.2
CHLOROETHANE	ND .61J	ś	.5
CHLOROFORM	ND	ξ	.5
CHLOROMETHANE	ND	555555555555555555555555555555555555555	.2
CIS-1,2-DICHLOROETHENE	ND	ร์	.2
CIS-1,3-DICHLOROPROPENE	.29J		.2
DIBROMOCHLOROMETHANE	ND	.5	.2
ETHYLBENZENE	ND	- 5	.2
XYLENES MIBE	ND	5 1	.2
YLENE CHLORIDE	ND		.5
	ND	5 5 5	.2
RENE TETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	.5 .5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
1,2-DICHLOROETHANE-D4	100	65 - 135	
TOLUENE-D8	96	75-125	
BROMOFLUOROBENZENE	96	75 - 125	

R.L. : Reporting limit
* : Out of QC

Exceeded calibration range Found in associated method blank Value between R.L. and MDL : Value from dilution analysis Đ

D.O. : Diluted out

Client : SES-TECH Date Collected: 06/21/06
Project : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06
Project : 06F248 Date Extracted: 06/24/06 17:34

Project : Date Received: 06/24/06 17:34

Date Analyzed: 06/24/06 17:34

Law Samp ID: F248-06 Dilution Factor: 1
Lab File ID: RFV610 Matrix : WATER
Ext Btch ID: V001F47 % Moisture : NA
Calib. Ref.: REV408 Instrument ID : T-001

DADAMITEDE	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
PARAMETERS			
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	. 2
1,1-DICHLOROETHANE	ND	5	.2
1.1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	.51J	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	- 5	.2
CHLOROFORM	.62J	5	.2
CHLOROMETHANE	.23J	5	.2
CLS-1,2-DICHLOROETHENE	ND	5	.2
1,3-DICHLOROPROPENE	. ND	.5	.2
ROMOCHLOROMETHANE	.32J	5	.2
ETHYLBENZENE	ND	.5	.2
XYLENES	ND	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND ·	5	.2
SUPPOCATE PARAMETERS	% RECOVERY	QC LIMIT	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1.2-DICHLOROETHANE-D4	110	65-135
TOLUENE-D8	103	75 - 125
BROMOFLUOROBENZENE	103	75 - 125

R.L.: Reporting limit

* : Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL

: Value from dilution analysis

η. : Diluted out

Data File : E:\HPCHEM\1\DATA\06F24\RFV610.D

Acq On : 24 Jun 2006 5:34 pm Sample : 06F248-06 25mls Misc : DF=1

Operator: AS Inst : TOO1 Multiplr: 1.00

Quant Results File: VO01E19.RES

Vial: 12 Magrargens, inc.

MS Integration Params: 524INT.P Quant Time: Jun 26 16:33 2006

Quant Method: E:\HPCHEM\1\METHODS\VO01E19.M (RTE Integrator)

Title : METHOD 8260 25mls

Last Update : Mon May 22 10:30:58 2006 Response via : Initial Calibration

DataAcq Meth : VO01E19

Internal Standards	R.T. (QIon	Response	Conc Units Dev(Min)	
1) 1,4-DIFLUOROBENZENE 36) CHLOROBENZENE-D5 65) 1,2-DICHLOROBENZENE-D4	11.16 16.38 21.97	114 117 152	2172688 1846905 533116	10.00 ug/l 0.00 10.00 ug/l 0.00 10.00 ug/l 0.00)
System Monitoring Compounds 35) 1,2-Dichloroethane-d4 Spiked Amount 10.000	10.55	65	492559 Recove	= 110.30%	
48) Toluene-d8 Spiked Amount 10.000	13.69	98	2161982 Recove	10.27 ug/l/ 0.00 ery = 102.70%	
69) 4-Bromofluorobenzene Spiked Amount 10.000	18.68	95	660663 Recove	$\frac{10.28 \text{ ug/l}}{\text{ery}} = \frac{10.28 \text{ ug/l}}{102.80}$)
The said Compounds				Qvalue	
Target Compounds 3) Chloromethane 12) Acetone 30) Chloroform 43) Bromodichloromethane 56) Dibromochloromethane	3.68 5.88 9.42 12.38 15.32	50 43 83 83 129	16669 24078 65348 36792 13619	0.23 ug/l 83 4.06 ug/l 93 0.62/ug/l 96 0.51/ug/l 95 0.32/ug/l 92	3 5 5

^{(#) =} qualifier out of range (m) = manual integration RFV610.D VO01E19.M Mon Jun 26 16:33:26 2006

Data File : E:\HPCHEM\1\DATA\06F24\RFV610.D Vial: Mararana inc Operator: AS : 24 Jun 2006 5:34 pm Acq On Inst TO01 : 06F248-06 Sample Multiplr: 1.00 : DF=1 Misc MS Integration Params: 524INT.P Quant Results File: VO01E19.RES Quant Time: Jun 26 16:33 2006 : E:\HPCHEM\1\METHODS\VO01E19.M (RTE Integrator) Method METHOD 8260 25mls Title : Mon May 22 10:30:58 2006 Last Update Response via : Initial Calibration

1,4-DIFLUOROBENZENE,I

Abundance 1900000

1800000

1700000

16000001

1500000

1400000

1300000

1200000

1100000

1000000

900000

800000

700000¹

600000

500000

400000

300000

200000

100000

4.00

6.00

8.00

TIC: RFV610.D

CHLOROBENZENE-D5.

Dibromochioromethane.T

16.00

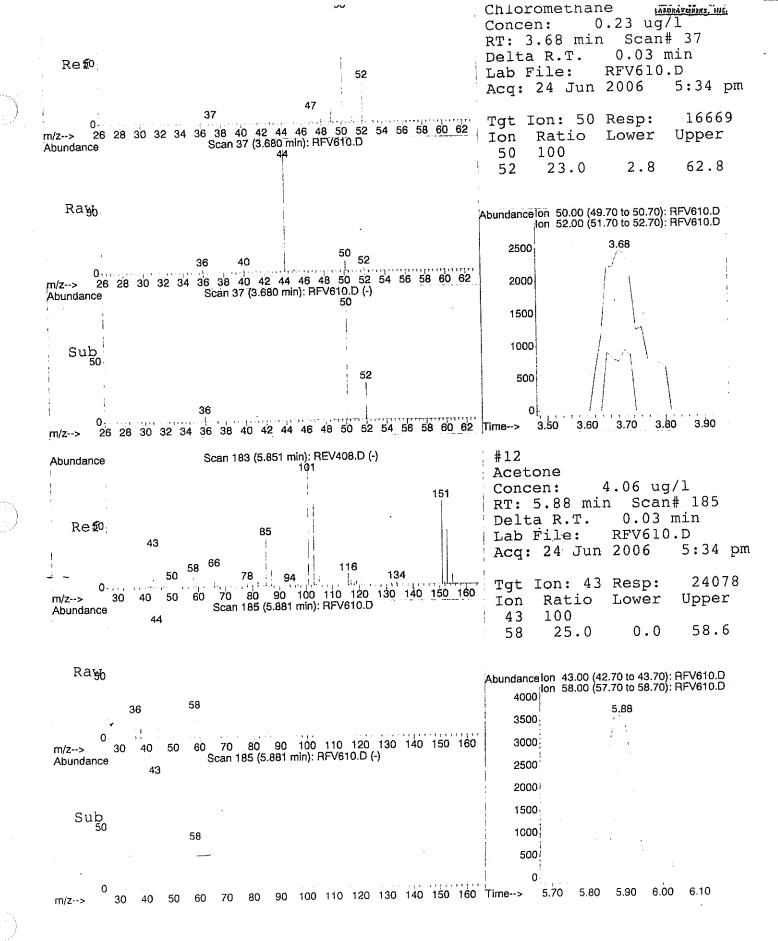
14.00

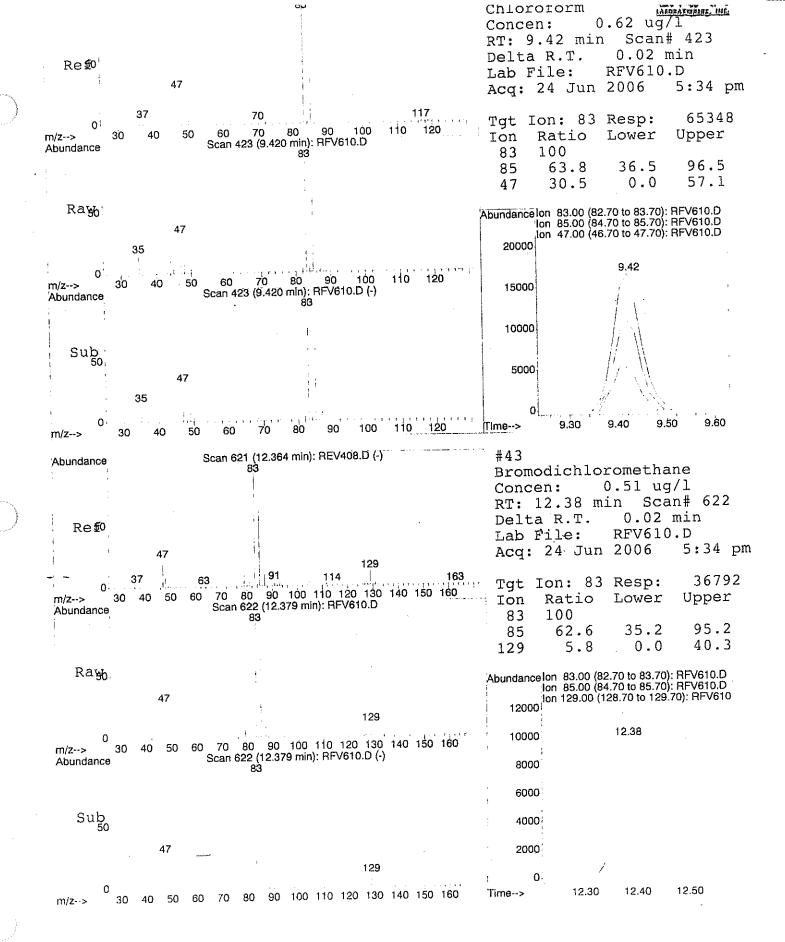
18.00

20.00

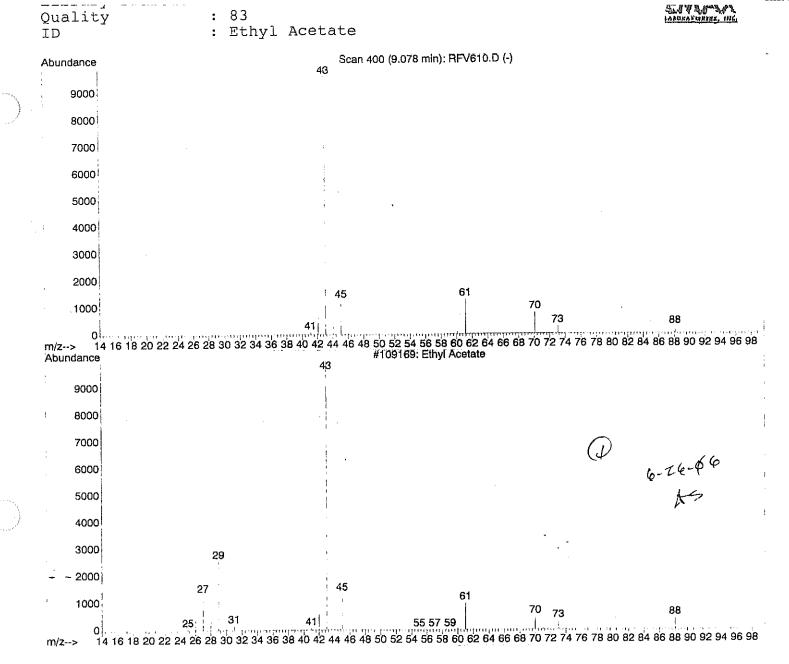
22.00

Mon Jun 26 16:33:27 2006 VO01E19.M RFV610.D


10.00


Chloroform,C,T


Page 2


26.00

24.00

Date Collected: 06/21/06

Client : SES-TECH
Project : CAMP PENDLETON, UST SITE 14131
Betch No. : 06F248 Date Received: 06/22/06 Date Extracted: 06/24/06 18:12

Date Analyzed: 06/24/06 18:12 e ID: 10-14131-007 Dilution Factor: 1 L samp ID: F248-07 : WATER Matrix Lab File ID: RFV611 % Moisture : NA Ext Btch ID: V001F47 Instrument ID : T-001

Calib. Ref.: REV408

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ИD	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	ND	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	. 5	.2
CHLOROFORM	.22J	5	.2
CHLOROMETHANE	ND	5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
1.3-DICHLOROPROPENE	ND	.5	.2
OMOCHLOROMETHANE	ND	5	.2
ETHYLBENZENE	ND	.5	.2
XYLENES	ND	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	<u>.5</u>	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2.
TERT-AMYL METHYL ETHER	ND	5	.2
		00 1 1417	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1,2-DICHLOROETHANE-D4 TOLUENE-D8 BROMOFLUOROBENZENE	110 103 103	65-135 75-125 75-125

R.L.: Reporting limit

: Out of QC

: Exceeded calibration range ε : Found in associated method blank : Value between R.L. and MDL : Value from dilution analysis

non: Diluted out

QC SUMMARIES

Date Collected: NA Client : SES-TECH
Project : CAMP PENDLETON, UST SITE 14131
8670h No. : 06F248 Date Received: 06/24/06 Date Extracted: 06/24/06 14:22 Date Analyzed: 06/24/06 14:22 b ID: MBLK1W Dilution Factor: 1 L____samp ID: V001F470 Matrix : WATER Lab File ID: RFV605 % Moisture : NA Ext Btch ID: VO01F47 Instrument ID : T-001

Calib. Ref.: REV408

	RESULTS	RL.	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1.2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	ND	5	.2
BROMOFORM	. ND	5	.3
BROMOMETHANE	ND ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	. 5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
1.3-DICHLOROPROPENE	ND	.5	.2
OMOCHLOROMETHANE	ND	5	.2
ETHYLBENZENE	ND	.5	.2
XYLENES	ND	5	.2
MTBE	ND	1	.2
METHYLENE_ CHLORIDE	ND	5	.5
STYRENE	ND	- 5	.2
TETRACHLOROETHYLENE	ИD	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5_	.2
TRANS-1,3-DICHLOROPROPENE	ND	-5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
THE PARTY DARWETTON	% PECOVERY	OC LIMIT	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1.2-DICHLOROETHANE-D4	95	65 - 135
TOLUENE-D8	95	75 - 125
BROMOFLUOROBENZENE	96	75 - 125

R.L.: Reporting limit

: Out of QC

: Exceeded calibration range : Found in associated method blank : Value between R.L. and MDL: Value from dilution analysis

າງ. : Diluted out

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

06F248 BATCH NO .:

SW 5030B/8260B

'ଏପ :

MATRIX: DILUTION FACTOR: 1

WATER

MBLK1W

V001F47Q RFV605

V001F47L

V001F47C

RFV602

RFV603

1

DATE EXTRACTED: 06/24/0614:22 06/24/0612:27 06/24/0613:05 06/24/0614:22 06/24/0612:27 06/24/0613:05

V001F47

DATE COLLECTED: NA DATE RECEIVED: 06/24/06

NA

% MOISTURE:

PREP. BATCH: CALIB. REF:

DATE ANALYZED:

SAMPLE ID:

LAB SAMP ID:

LAB FILE ID:

V001F47 **REV408**

V001F47 REV408

REV408

ACCESSION:

PARAMETER	BLNK RSLT (ug/L)	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT	BSD RSLT (ug/L)	BSD % REC	RPD (%)	QC LIMIT	MAX RPD
1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	ND ND ND ND	10 10 10 10 10	8.6 8.5 9.57 9.04 8.42	86 85 96 90 84	10 10 10 10 10	8.22 8.24 9.39 8.8 8.26	82 82 94 88 83	5 3 2 3 2	75-125 75-125 75-125 75-125 75-125	20 20 20 20 20 20

SURROGATE PARAMETER	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC ·	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	QC LIMIT
1,2-Dichloroethane-d4	10	9.08 9.37	91 94	10 10	8.63 8.96	86 90	65 - 135 75 - 125
nofluorobenzene	10	8.99	90	10	8.65	87	75-125

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

BATCH NO.:

SAMPLE ID:

LAB SAMP ID: LAB FILE ID: 06F248

ື: **ປ**ດ'ີ SW 5030B/8260B

MATRIX: DILUTION FACTOR: 1

WATER

10-14131-004 F248-04

F248-04M RFV614

F248-04S **RFV615**

RFV613 DATE EXTRACTED: 06/24/0619:29 06/24/0620:07 06/24/0620:45

06/24/0619:29 06/24/0620:07 06/24/0620:45

DATE RECEIVED: 06/22/06

% MOISTURE:

DATE COLLECTED: 06/21/06

NA

DATE ANALYZED: PREP. BATCH: CALIB. REF:

V001F47 **REV408**

V001F47 **REV408**

V001F47 REV408

ACCESSION:

PARAMETER	SMPL RSLT (ug/L)	SPIKE AMT (ug/L)	MS RSLT (ug/L)	MS % REC	SPIKE AMT (ug/L)	MSD RSLT (ug/L)	MSD % REC	RPD (%)	QC LIMIT	MAX RPD
1,1-Dichloroethene	ND	10	8.97	90	10	9.02	90	1	75-125	20
Benzene	ND	10	8.74	87	10	8.72 9.89	87 99	1	75-125 75-125	20 20
Chlorobenzene Toluene	DN DN	10 10	9.94 9.62	· 99	10 10	9.36	94	3	75-125	20
Trichloroethene	ND	10	8.47	85	10	8.37	84	1	75-125	20

SURROGATE PARAMETER	SPIKE AMT (ug/L)	MS RSLT (ug/L)	MS % REC	SPIKE AMT (ug/L)	MSD RSLT (ug/L)	MSD % REC	QC LIMIT
1,2-Dichloroethane-d4	10	10.7	107	.10	10.2	102	65-135
	10	9.67	97	10	9.88	99	75-125
	10	9.1	91	10	9.38	94	75-125

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14131

METHOD 3520C/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS

SDG#: 06F248

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

SDG:

06F248

METHOD 3520C/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS

Six (6) water samples were received on 06/22/06 for Semi Volatile Organic analysis by Method 3520C/8270C SIM in accordance with USEPA SW846, $3^{\rm rd}$ ed.

1. Holding Time

Analytical holding time was met.

2. Tuning and Calibration

Tuning and calibration were carried out at 12-hour interval. All QC requirements were met.

3. Method Blank

Method blank was free of contamination at half of the reporting limit.

4. Surrogate Recovery

Recoveries were within QC limit.

5. Lab Control Sample/Lab Control Sample Duplicate

Recoveries were within QC limit.

6. Matrix Spike/Matrix Spike Duplicate

Sample F248-04 was spiked. All recoveries were within QC limit. RPD of one analyte was above QC.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met with the aforementioned exception.

LAB CHRONICLE SEMI VOLATILE ORGANICS BY GC/MS

7 Client : SES-TECH

יייייייייייייייייייייייייייייייייייייי									מבני שכי	0.7.00
٠٠	ENDLETON	SESTIELM CAMP PENDLETON, UST SITE 14131	31						Instrume	Instrument ID : T-048
51 26 35 36 17 18						## ## ## ## ## ## ## ## ## ## ## ## ##				
					WATER	2				
Client		Laboratory	Dilution	*	Analysis	Extraction	Sample	Calibration Prep.	n Prep.	
Samole 10		Sample ID		Hoist	DateTime	Datelime	Data FN	Data FN	Batch	Notes
			1 1 1 1 1	1 1 1		1 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1 1	
MBJ K7LL		SVE033WR	-	N.	06/27/0616:07	06/26/0613:30	RF2448	RFZ008	SVF033W	Method Blank
1.CS1E		SVF033WL		Ž	06/27/0616:26	06/26/0613:30	RF2449	RFZ008	SVF033W	Lab Control Sample (LCS
10-14131-002	me	F248-02	. 95	¥	06/27/0619:19	06/26/0613:30	RFZ458	RFZ008	SVF033W	Field Sample
10-14131-003	كمهور	£248-03	56	AX.	06/27/0619:38	06/26/0613:30	RF2459	RFZ008	SVF033W	Field Sample
10-14131-004		F248-04	8	×	06/27/0619:57	06/26/0613:30	RF2460	RFZ008	SVF033W	Field Sample
10-14131-004MS		F248-04H	86.	¥	06/27/0620:16	06/26/0613:30	RF2461	RFZ008	SVF033H	Matrix Spike Sample (MS)
10-14131-004MSD		F248-04S	86.	XX.	06/27/0620:36	06/26/0613:30	RF2462	RFZ008	SVF033W	MS Duplicate (MSD)
10-14131-005		F248-05	66.	¥	06/27/0620:55	06/26/0613:30	RFZ463	RFZ008	SVF0334	field Sample
10-14131-006		£248-06	66.	¥	06/27/0621:15	06/26/0613:30	RFZ464	RFZ008	SVF033W	Field Sample
10-14131-007		F248-07	56	A N	06/27/0621:34	06/26/0613:30	RF2465	RFZ008	SVF033W	Field Sample

SAMPLE RESULTS

Client : SES-TECH Date Collected: 06/21/06
ject : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06

Cch No. : 06F248 Date Extracted: 06/26/06 13:30

Sample ID: 10-14131-002 Date Analyzed: 06/27/06 19:19

Lab Samp ID: F248-02 Dilution Factor: .95
Lab File ID: RFZ458 Matrix : WATER
Ext Btch ID: SVF033W % Moisture : NA

Calib. Ref.: RFZ008 Instrument ID : T-048

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ACENAPHTHENE	ND	.95	.19
ACENAPHTHYLENE	ND	.95	.19
ANTHRACENE	ND	1.9	.19
BENZO(A)ANTHRACENE	ND	1.9	.19
BENZO(A)PYRENE	ND	.95	. 19
BENZO(B)FLUORANTHENE	ND	.95	.19
BENZO(K)FLUORANTHENE	ND	1.9	.19
BENZO(G,H,I)PERYLENE	ND	. 95	.19
CHRYSENE	` ND	1.9	.19
DIBENZO(A, H)ANTHRACENE	МD	.95	.19
FLUORANTHENE	ND	1.9	.19
FLUORENE	ND	1.9	.19
INDENO(1,2,3-CD)PYRENE	ND	. 95	.19
PHTHALENE	ND	.95	.19
NANTHRENE	ND	.95	.19
PYRENE	ND	1.9	.19
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

TERRUENYI -N14	89	50-130	

TERPHENYL-D14 89 50-130

RL: Reporting Limit

Date Collected: 06/21/06

: SES-TECH Client Date Received: 06/22/06 ect : CAMP PENDLETON, UST SITE 14131

Date Extracted: 06/26/06 13:30 ___ch No. : 06F248

Date Analyzed: 06/27/06 19:38 Sample ID: 10-14131-003

Dilution Factor: .95 Lab Samp ID: F248-03 : WATER Matrix Lab File ID: RFZ459

% Moisture : NA Ext Btch ID: SVF033W Instrument ID : T-048

Calib. Ref.: RFZ008

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ACENAPHTHENE	ND	.95	.19
ACENAPHTHYLENE	ND	.95	.19
ANTHRACENE	ND	1.9	. 19
BENZO(A)ANTHRACENE	ND	1.9	.19
BENZO(A)PYRENE	ND	.95	. 19
BENZO(B)FLUORANTHENE	ND	.95	.19
BENZO(K)FLUORANTHENE	ND	1.9	.19
BENZO(G,H,I)PERYLENE	ND	. 95	.19
CHRYSENE	ND	. 1.9	. 19
DIBENZO(A, H) ANTHRACENE	ИD	.95	.19
FLUORANTHENE	ND	. 1.9	.19
FLUORENE	ND	1.9	. 19
INDENO(1,2,3-CD)PYRENE	NÐ	.95	.19
PHTHALENE	ND	.95	.19
ENANTHRENE	ND	.95	. 19
PYRENE	ND	1.9	.19
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
TERRHENYI -D14	104	50-130	

RL: Reporting Limit

TERPHENYL-D14

Date Collected: 06/21/06 Client : SES-TECH ect : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06 Date Extracted: 06/26/06 13:30ch No. : 06F248 Date Analyzed: 06/27/06 19:57 Sample ID: 10-14131-004 Dilution Factor: .99 Lab Samp ID: F248-04 : WATER Matrix Lab File ID: RFZ460

Ext Btch ID: SVF033W Instrument ID : T-048 Calib. Ref.: RFZ008

% Moisture : NA

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ACENAPHTHENE	ND	.99	.2
ACENAPHTHYLENE	ND	.99	.2
ANTHRACENE	ND	2	.2
BENZO(A)ANTHRACENE	ND	2	.2
BENZO(A)PYRENE	ND	.99	.2
BENZO(B)FLUORANTHENE	ND	.99	.2
BENZO(K)FLUORANTHENE	ND	2	.2
BENZO(G,H,I)PERYLENE	ND	.99	.2
CHRYSENE	· ND	2	.2
DIBENZO(A, H)ANTHRACENE	ND	.99	.2
FLUORANTHENE	ND	. 2	.2
FLUORENE	ND	2	.2
INDENO(1,2,3-CD)PYRENE	ND	.99	.2
PHTHALENE	ND	.99	.2
NANTHRENE	ND	.99	.2
PYRENE	ND	2	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

50-130 91 TERPHENYL-D14

RL: Reporting Limit

Client : SES-TECH : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06 ject

.⊒√ch No. : 06F248

Sample ID: 10-14131-005

Lab Samp ID: F248-05 Lab File ID: RFZ463

Ext Btch ID: SVF033W Calib. Ref.: RFZ008

Date Collected: 06/21/06

Date Extracted: 06/26/06 13:30 Date Analyzed: 06/27/06 20:55

Dilution Factor: _99

: WATER Matrix

: NA % Moisture Instrument ID : T-048

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ACENAPHTHENE	ND	.99	.2
ACENAPHTHYLENE	ND	.99	.2
ANTHRACENE	ND	2	.2
BENZO(A)ANTHRACENE	ND	2	.2
BENZO(A)PYRENE	ND	.99	.2
BENZO(B)FLUORANTHENE	ND	.99	.2
BENZO(K)FLUORANTHENE	ND	2	.2
BENZO(G,H,I)PERYLENE	ND	-99	.2
CHRYSENE	ND	2	.2
DIBENZO(A, H)ANTHRACENE	ND	.99	.2
FLUORANTHENE	ND	. 2	.2
FLUORENE	ND	2	.2
INDENO(1,2,3-CD)PYRENE	ND	-99	.2
PHTHALENE	ND	.99	.2
NANTHRENE	ND	.99	.2
PYRENE	ND	2	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
TERPHENYL-D14	88	50-130	

RL: Reporting Limit

Date Collected: 06/21/06 : SES-TECH Client

ect : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06

Date Extracted: 06/26/06 13:30 ._∠ch No. : 06F248

Date Analyzed: 06/27/06 21:15 Sample ID: 10-14131-006 Dilution Factor: .99

Lab Samp ID: F248-06 : WATER Matrix

Lab File ID: RFZ464 % Moisture : NA Ext 8tch ID: SVF033W Instrument ID : T-048

	RESULTS	ŘL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
T TOTALLE LETT			
ACENAPHTHENE	ND	.99	.2
ACENAPHTHYLENE	ND	.99	.2
ANTHRACENE	ND	2	.2
BENZO(A)ANTHRACENE	ND	2	.2
BENZO(A)PYRENE	ND	.99	.2
BENZO(B)FLUORANTHENE	ND	.99	.2
BENZO(K)FLUORANTHENE	ND	2	.2
BENZO(G,H,I)PERYLENE	ND	.99	.2
CHRYSENE	ND	2	.2
DIBENZO(A, H)ANTHRACENE	. ND	.99	.2
FLUORANTHENE	ND	_. 2	.2
FLUORENE	ND	2	.2
INDENO(1,2,3-CD)PYRENE	ND	.99	.2
APHTHALENE	ND	.99	.2
ENANTHRENE	ND	.99	.2
PYRENE	ND	2	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

78

50-130

RL: Reporting Limit

TERPHENYL-D14

Calib. Ref.: RFZ008

Data File : D:\CHEMDATA\06F27\RFZ464.D

Acq On : 27 JUN 2006 21:15

: 06F248-06 Sample

Misc

MS Integration Params: RTEINT.P

Operator: SG : TO48 Inst

Multiplr: 1.00

Quant Results File: SV48F02.RES Quant Time: Jun 28 13:47 2006

Quant Method : C:\HPCHEM\1\METHODS\SV48F02.M (RTE Integrator)

: METHOD 8270C SIM GCMS-QP5000 Title Last Update : Fri Jun 02 15:54:34 2006

Response via : Initial Calibration

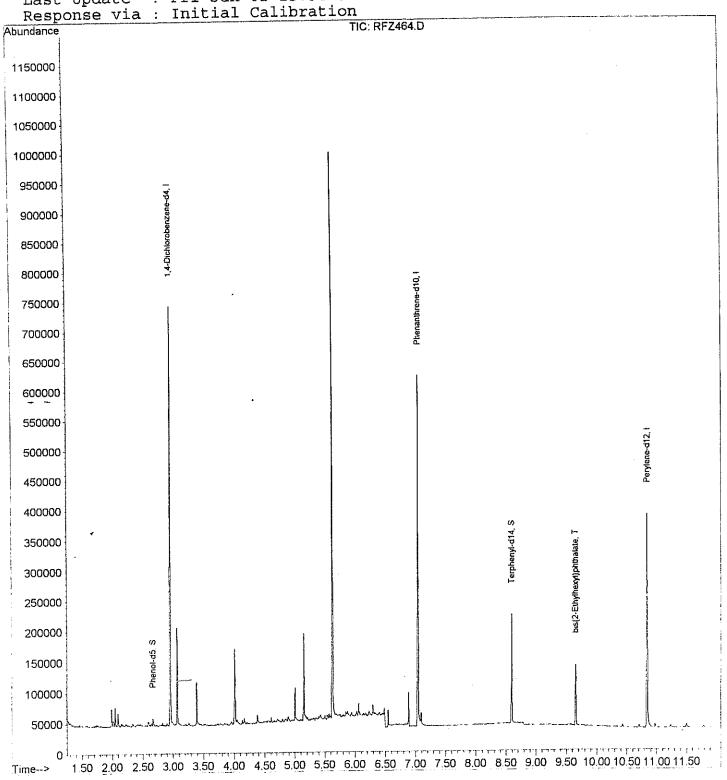
DataAcq Meth :

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-d4 20) Phenanthrene-d10 28) Perylene-d12	2.96 7.04 10.84	152 188 264	214959 428636 255660	10.00 ng 10.00 ng 10.00 ng	0.00 0.00 0.00
System Monitoring Compounds 3) Phenol-d5 27) Terphenyl-d14	2.67 8.59	99 244	8129 106571	0.27 ng 3.90 ng	0.00
Target Compounds 31) bis(2-Ethylhexyl)phthalate	9.65	149	69123	1.33 ng	Qvalue 88

Data File : D:\CHEMDATA\06F27\RFZ464.D

21:15 : 27 JUN 2006 Acq On

06F248-06 Sample

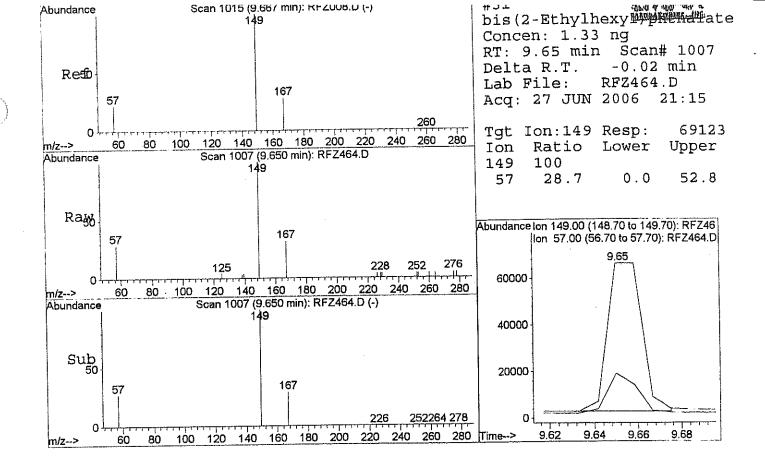

Misc

MS Integration Params: RTEINT.P Ouant Results File: SV48F02.RES Quant Time: Jun 28 13:47 2006

: C:\HPCHEM\1\METHODS\SV48F02.M (RTE Integrator) Method

METHOD 8270C SIM GCMS-QP5000 Title : Fri Jun 02 15:54:34 2006

Last Update


Vial Minimum III

: TO48

Operator: SG

Multiplr: 1.00

Inst

Client : SES-TECH Date Collected: 06/21/06

Ject : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06

Date Extracted: 06/26/06 13:30
Sample ID: 10-14131-007
Date Analyzed: 06/27/06 21:34

 Lab Samp ID: F248-07
 Dilution Factor: .95

 Lab File ID: RFZ465
 Matrix : WATER

 Ext Btch ID: SVF033W
 % Moisture : NA

 Calib. Ref.: RFZ008
 Instrument ID : T-048

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
FARMETERS			
ACENAPHTHENE	DM	.95	.19
ACENAPHTHYLENE	ND	.95	.19
ANTHRACENE	ND	1.9	.19
BENZO(A)ANTHRACENE	ND	1.9	.19
	ND	.95	.19
BENZO(A)PYRENE	ND	.95	. 19
BENZO(B) FLUORANTHENE	ND	1.9	.19
BENZO(K)FLUORANTHENE	ND	.95	.19
BENZO(G,H,I)PERYLENE	ND	1.9	.19
CHRYSENE	ND ND	.95	. 19
DIBENZO(A,H)ANTHRACENE	ND ND	1.9	.19
FLUORANTHENE		1.9	.19
FLUORENE	ND	.95	.19
INDENO(1,2,3-CD)PYRENE	ND		.19
PHTHALENE	ND	.95	.19
ENANTHRENE	ND	.95	
PYRENE	ND	1.9	.19
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
delice and the second second			
TERPHENYL-D14	102	50-130	

RL: Reporting Limit

QC SUMMARY

Date Collected: NA : SES-TECH Client Date Received: 06/26/06 ect : CAMP PENDLETON, UST SITE 14131 Date Extracted: 06/26/06 13:30 butch No. : 06F248 Date Analyzed: 06/27/06 16:07 Sample ID: MBLK1W Dilution Factor: 1 Lab Samp ID: SVF033WB : WATER Lab File ID: RFZ448 : NA % Moisture Ext Btch ID: SVF033W

Instrument ID : T-048

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)

ACENAPHTHENE .	ND	1	.2
ACENAPHTHYLENE	ND	1	.2
ANTHRACENE	ND	2	.2
BENZO(A)ANTHRACENE	ND	2	.2
BENZO(A)PYRENE	ND	1	.2
BENZO(B)FLUORANTHENE	ND	1	.2
BENZO(K)FLUORANTHENE	ND	2	.2
BENZO(G, H, I)PERYLENE	ND	1	.2
CHRYSENE	ND	2	.2
DIBENZO(A, H)ANTHRACENE	ND	1	-2
FLUORANTHENE	ND	2	.2
FLUORENE	ND	2	.2
INDENO(1,2,3-CD)PYRENE	ND	1	.2
PHTHALENE	ND	1	.2
NANTHRENE	ND	1	.2
PYRENE	. ND	2	.2
•		OC LIMIT	

% RECOVERY QC LIMIT SURROGATE PARAMETERS _____ _____ 50-130 95 TERPHENYL-D14

RL: Reporting Limit

Calib. Ref.: RFZ008

EMAX QUALITY CONTROL DATA LCS ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

CH NO.:

06F248

. HOD:

SW 3520C/8270C SIM

MATRIX:

WATER

% MOISTURE:

DATE COLLECTED: NA

DATE RECEIVED: 06/26/06

NΑ

DILUTION FACTOR: 1

SAMPLE 1D:

MBLK1W

LAB SAMP ID:

SVF033WB

SVF033WL

LAB FILE ID:

RFZ448

RFZ449

DATE EXTRACTED: 06/26/0613:30 06/26/0613:30

DATE ANALYZED: 06/27/0616:07 06/27/0616:26

SVF033W

PREP. BATCH:

SVF033W

CALIB. REF:

RFZ008

RFZ008

ACCESSION:

PARAMETER	BLNK RSLT (ug/L)	SPIKE AMT	BS RSLT (ug/L)	BS % REC	QC LIMIT
	ND	10	9.75	97	40-130
Acenaphthene	ND	10	9.32	93	40-130
Acenaphthylene		•	9.12	91	50-130
Anthracene	ND	10			
Benzo(a)anthracene	ND	10	10.8	108	50-130
Benzo(a)pyrene	ND	10	9.79	98	50-130
Benzo(b)fluoranthene	ND	10	12.7	127	50 - 130
enzo(k)fluoranthene	ND	10	8.18	82	30-150
nzo(g,h,i)perylene	ND	10	10.1	101	50-130
Chrysene .	ND	10	9.7	97	50-130
Dibenzo(a,h)anthracene	ND	10	9.93	99	40-140
Fluoranthene	ND	10	9.76	98	50-130
Fluorene	ND	10	10.3	103	40-130
Indeno(1,2,3-cd)pyrene	ND	10	10.2	102	30-140
Naphthalene	ND	10	7.41	74	30-130
	ND	10	9.09	91	40-130
Phenanthrene Pyrene	ND	10	9.63	96	40-130

	SPIKE AMT	BS RSLT		QC LIMIT
SURROGATE PARAMETER	(ug/L)	(ug/L)	% REC	(%)
Terphenyl-d14	5	4.75	95	50-130

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

CH NO.:

06F248

НОО:

SW 3520C/8270C SIM

MATRIX:

WATER

% MOISTURE:

NA :

SAMPLE ID:

DILUTION FACTOR: .99

.98

.98

LAB SAMP ID:

10-14131-004 F248-04

F248-04M

F248-04S

LAB FILE ID:

RFZ460

RFZ461

RFZ462

DATE EXTRACTED: 06/26/0613:30 06/26/0613:30 06/26/0613:30

06/27/0619:57 06/27/0620:16 06/27/0620:36

DATE RECEIVED:

DATE COLLECTED: 06/21/06 06/22/06

DATE ANALYZED: PREP. BATCH:

SVF033W

SVF033W

svF033W

CALIB. REF:

RFZ008

RFZ008

RFZ008

ACCESSION:

	SMPL RSLT	SPIKE AMT	MS RSLT	MS	SPIKE AMT	MSD RSLT	MSD	RPD	QC LIMIT	MAX RPE
PARAMETER	(ug/L)	(ug/L)	(ug/L)	% REC	(ug/L)	(ug/L)	% REC	(%)	(%)	(%)
					~					* .
Acenaphthene	ND	9.8	12	122	9.8	8.84	90	30	40-130	30
Acenaphthylene	ND	9.8	11.4	117	9.8	8.55	87	29	40-130	30
Anthracene	ND	9.8	9.34	95	9.8	8.38	85	11	50-130	30
Benzo(a)anthracene	ND	9.8	9.52	97	9.8	9.76	100	2	50-130	30
Benzo(a)pyrene	ND	9.8	8.82	90	9.8	8.63	88	2	50-130	30
Benzo(b)fluoranthene	ND	9.8	9.37	96	9.8	9.3	95	1	50-130	30
າກzo(k)fluoranthene	ND	9.8	9.79	100	9.8	9.29	95	5	30-150	30
zo(g,h,i)perylene	ND	9.8	9.55	97	9.8	8.88	91	7	50-130	30
Chrysene	ND	9.8	8.69	89	9.8	8.67	89	0	50-130	30
Dibenzo(a.h)anthracene	ND	9.8	9.51	97	9.8	8.99	92	6	40~140	30
Fluoranthene	ND	9.8	9.62	98	9.8	9.33	95	3	50-130	30
Fluorene	ND	9.8	12.1	124	9.8	9.17	94	28	40-130	30
Indeno(1,2,3-cd)pyrene	ND	9.8	9.61	98	9.8	8.99	92	7	30-140	30
Naphthalene	ND	9.8	10.1	103	9.8	7.03	72	36*	30-130	30
Phenanthrene	ND	9.8	9.23	94	9.8	8.19	84	12	40-130	30
Pyrene	ND	9.8	9.57	98	9.8	9.17	94	4	40-130	30

	SPIKE AMT	MS RSLT	MS	SPIKE AMT	MSD RSLT	MSD	QC LIMIT
SURROGATE PARAMETER	(ug/L)	(ug/L)	% REC	(ug/L)	(ug/L)	% REC	(%)
Terphenyl-d14	4.9	4.04	82	4.9	4.93	101	50-130

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14131

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 06F248

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

SDG:

06F248

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Three (3) soil samples were received on 06/22/06 for Total Petroleum Hydrocarbons by Extraction analysis by Method 3520C/8015B in accordance with SW846 3RD Edition.

1. Holding Time

Analytical holding time was met. Extraction was performed on 06/26/06 and completed on 06/27/06.

2. Calibration

Initial calibration was seven points for Diesel. %RSDs were within 20%. Continuing calibrations were carried out within 12-hour intervals and all recoveries were within 85-115%.

3. Method Blank

Method blank was free of contamination at half of the reporting limit.

4. Surrogate Recovery

All recoveries were within QC limits.

5. Lab Control Sample/Lab Control Sample Duplicate

All recoveries were within QC limits.

6. Matrix Spike/Matrix Spike Duplicate

Sample F248-04 was spiked. Recoveries were within QC limits.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met. Sample results were quantitated from C10 to C24 using Diesel (C10-C24) calibration factor.

Samples E248-05 and -06 displayed motor oil-like fuel pattern.

LAB CHRONICLE
TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

PENDLETON	roject : CAMP PENDLETON, UST SITE 14131	31	11 11 11 11 11 11 11		() 11 11 11 11 11 11 11 11	#		Instrument ID	nt 10 : GC1050 ***********************************
				WATER	č.				
	Laboratory Dilution	Dilution	3-2	Analysis	Extraction	Sample	Calibration Prep.	Prep.	
	Sample 10	Factor	Moist	Datelime	DateTime	Data FN	Data FN	Batch	Notes
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 7 1 1 1 1 1 1 1 2 3 1		1 4 1 1 1		* * * * * * * * * * * * * * * * * * * *
	NSF038UR		Ą	06/27/0613:14	06/26/0613:30	TF27005A	TF27002A	DSF038W	Method Blank
******	DSF038WL 7		¥	06/27/0613:56	06/26/0613:30	TF27006A	TF27002A	DSF038W	Lab Control Sample (LCS)
ngu di	DSF038WC	•	¥	06/27/0614:39	06/26/0613:30	TF27007A	TF27002A	DSF038W	LCS Duplicate
	F248-02	, 46.	W.	06/27/0615:21	06/26/0613:30	TF27008A	TF27002A	DSF038W	Field Sample
	F248-03	96.	N.	06/27/0616:04	06/26/0613:30	TF27009A	TF27002A	DSF038W	Field Sample
	F248-04	86	¥¥	06/27/0616:46	06/26/0613:30	TF27010A	TF27002A	DSF038W	Field Sample
	F248-04M	1.01	×	06/27/0617:29	06/26/0613:30	TF27011A	TF27002A	DSF038W	Matrix Spike Sample (MS)
0-14131-004MSD	F248-04S	•	KA KA	06/27/0618:11	06/26/0613:30	TF27012A	TF27002A	DSF038W	MS Duplicate (MSD)
	F248-05	. 56	A.	06/27/0619:36	06/26/0613:30	TF27014A	TF27002A	DSF038W	Field Sample
	f248-06	. 98	¥.	06/27/0620:19	06/26/0613:30	TF27015A	TF27002A	DSF038W	Field Sample
	50 0767	Ĺ	1	75.02.10.57	06/26/0613-30	75270138	TE270024	DSF038W	Field Sample

/

SAMPLE RESULTS

Client : SES-TECH
Project : CAMP PENDLETON, UST SITE 14131
Patch No. : 06F248 Date Collected: 06/21/06 Date Received: 06/22/06 Date Extracted: 06/26/06 13:30 Date Analyzed: 06/27/06 15:21 ple 10: 10-14131-002 Dilution Factor: .94 ည် Samp ID: F248-02 Lab File ID: TF27008A Matrix : WATER % Moisture : NA Instrument ID : GCT050 Ext Btch ID: DSF038W Calib. Ref.: TF27002A MDL RESULTS RL (mg/L)(mg/L) (mg/L) **PARAMETERS** _____ .094 .024 ND DIESEL QC LIMIT % RECOVERY SURROGATE PARAMETERS 65-135 90 HEXACOSANE : Reporting Limit Parameter H-C Range

Diesel

C10-C24

Client : SES-TECH Date Collected: 06/21/06 Project : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06 Project Date Extracted: 06/26/06 13:30 Date Analyzed: 06/27/06 16:04 ple ID: 10-14131-003 Dilution Factor: .96 _ab Samp ID: F248-03 : WATER Lab File ID: TF27009A Matrix Ext Btch ID: DSF038W % Moisture : NA

Instrument ID : GCT050

	RESULTS	RL	MDL
PARAMETERS	(mg/L)	(mg/L)	(mg/L)
DIESEL	ND	.096	.024
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

SURROGATE PARAMETERS % RECOVERY GC LIMIT
HEXACOSANE 85 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

Calib. Ref.: TF27002A

TANDRAY DINES, INC.

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

2254438475564757566476666476666567688757625676768757676767676767676767676767676 Date Collected: 06/21/06 Client : SES-TECH Date Received: 06/22/06 oject : CAMP PENDLETON, UST SITE 14131 th No. : 06F248 Project Date Extracted: 06/26/06 13:30 Date Analyzed: 06/27/06 16:46 le ID: 10-14131-004 Dilution Factor: .98 Lap Samp ID: F248-04 : WATER Matrix Lab File ID: TF27010A % Moisture Ext 8tch ID: DSF038W Instrument ID : GCT050 Calib. Ref.: TF27002A RL RESULTS (mg/L)(mg/L)(mg/L) PARAMETERS

.025

DIESEL ND .098

SURROGATE PARAMETERS % RECOVERY QC LIMIT

HEXACOSANE 94 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

Date Collected: 06/21/06 Client : SES-TECH Date Received: 06/22/06 Project : CAMP PENDLETON, UST SITE 14131 Date Extracted: 06/26/06 13:30 r tch No. : 06F248 Date Analyzed: 06/27/06 19:36 le ID: 10-14131-005 Samp ID: F248-05 Dilution Factor: .95 Matrix : WATER Lab File ID: TF27014A : NA % Moisture Ext 8tch ID: DSF038W Instrument ID : GCT050 Calib. Ref.: TF27002A RL MDL RESULTS (mg/L) (mg/L) (mg/L) PARAMETERS ____ .024 .095 .95 DIESEL % RECOVERY QC LIMIT SURROGATE PARAMETERS . 65 - 135 100 HEXACOSANE RL : Reporting Limit Parameter H-C Range

C10-C24

Diesel

Client: SES-TECH Date Collected: 06/21/06
Project: CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06
Batch No.: 06F248 Date Extracted: 06/26/06

atch No. : 06F248 Date Extracted: 06/26/06 13:30
ple ID: 10-14131-006 Date Analyzed: 06/27/06 20:19
Samp ID: F248-06 Dilution Factor: .98

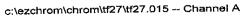
Lab File ID: TF27015A Matrix : WATER Ext Btch ID: DSF038W % Moisture : NA Calib. Ref.: TF27002A Instrument ID : GCT050

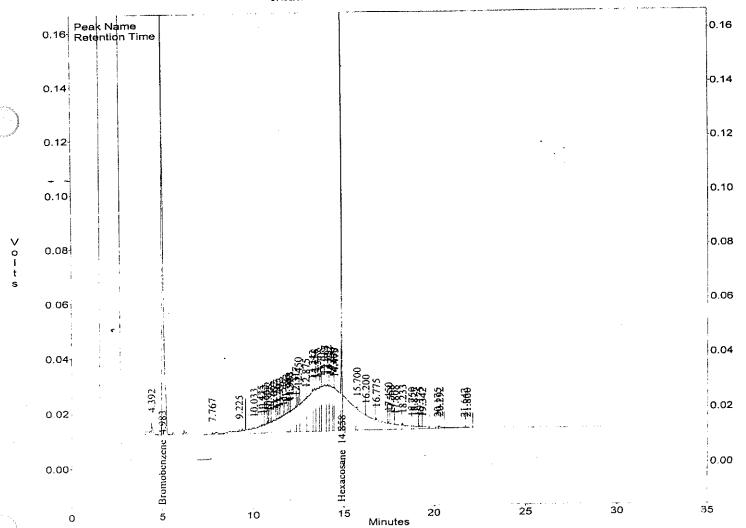
•	RESULTS	RL.	MDL
PARAMETERS	(mg/L)	(mg/L)	(mg/L)
DIESEL	1	.098	.025

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
HEXACOSANE	103	65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

File : c:\ezchrom\chrom\tf27\tf27.015
Method : c:\ezchrom\methods\ds50d18.met


Sample ID : 06F248-06


Acquired : Jun 27, 2006 20:19:17 rinted : Jun 29, 2006 16:55:54

√ser : JANE

Channel A Results

#	Peak Name	Ret.Time(Min)	Area	Ave. CF	ESTD Conc. (ppm)
"					
	Bromobenzene	4.983	992955	11886.6	83.5
		14.858	843712	32776.1	25.7
30	Hexacosane	14.000			162.5
GT.	Diesel (TOTAL)		3621174	22285.1	
			2323260	22203.1	104.6
G2	Diesel(C10-C24)			22261.9	140.0
G3	Diesel (C10-C28)		3115845	22201.7	

Date Collected: 06/21/06 Client : SES-TECH Project : CAMP PEND

Project : CAMP PENDLETON, UST SITE 14131 Date Received: 06/22/06 Date Extracted: 06/26/06 13:30 Date Analyzed: 06/27/06 18:54 ple 10: 10-14131-007

Dilution Factor: .95 ြောင် Samp ID: F248-07 : WATER Matrix Lab File ID: TF27013A Ext Btch ID: DSF038W % Moisture : NA Instrument ID : GCT050 Calib. Ref.: TF27002A

MDL RESULTS RL (mg/L) (mg/L) (mg/L) PARAMETERS -----ND .095 .024 DIESEL

% RECOVERY QC LIMIT SURROGATE PARAMETERS -----95 65 - 135 HEXACOSANE

RL : Reporting Limit Parameter H-C Range C10-C24 Diesel

QC SUMMARIES

=24x025+a=2554=24262xx+42556x4=24255x2=56492554450255647544524452445244444 Date Collected: NA Client : SES-TECH
Project : CAMP PENDLETON, UST SITE 14131
Tch No. : 06F248 Date Received: 06/26/06 Date Extracted: 06/26/06 13:30 Date Analyzed: 06/27/06 13:14 ple ID: MBLK1W Dilution Factor: 1 Lao Samp ID: DSF038WB Matrix : WATER Lab File ID: TF27005A : NA % Moisture Ext Btch ID: DSF038W Instrument ID : GCT050 Calib. Ref.: TF27002A

PARAMETERS (mg/L) (mg/L) (mg/L)

DIESEL ND .1 .025

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 97 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

CLIENT:

SES-TECH

CAMP PENDLETON, UST SITE 14131 PROJECT:

06F248 BATCH NO.:

METHOD:

METHOD 3520C/8015B

MATRIX: DILUTION FACTOR: 1

SAMPLE ID:

LAB SAMP ID:

LAB FILE ID:

PREP. BATCH:

CALIB. REF:

DATE ANALYZED:

WATER

MBLK1W

DSF038WB

TF27005A

DSF038WL

TF27006A

DSF038WC TF27007A

OATE EXTRACTED: 06/26/0613:30 06/26/0613:30 06/26/0613:30 06/27/0613:14 06/27/0613:56 06/27/0614:39

DSF038W

DSF038W DSF038W TF27002A TF27002A

TF27002A

DATE COLLECTED: NA DATE RECEIVED: 06/26/06

% MOISTURE:

NA

ACCESSION:

PARAMETER Diesel

SURROGATE PARAMETER

Hexacosane

BLNK RSLT SPIKE AMT BS RSLT (mg/L) (mg/L) ------

.25

(mg/L) 5 5.53

BS % REC 111

SPIKE AMT BSD RSLT (mg/L) (mg/L) 5 5.56

BSD RPD (%) % REC 111

QC LIMIT MAX RPO (%) (%) 0 65-135

ND

SPIKE AMT BS RSLT (mg/L) (mg/L)

. 243

SPIKE AMT BS % REC (mg/L) ---------97

(mg/L) _ - - - - - - - -. 25 . 25

BSD RSLT

% REC (%) 100

BSD

65 - 135

QC LIMIT

ARDRATORATE, INC.

QC LIMIT MAX RFE

(%) (%)

65-135

RPD

(%)

MSD

% REC

91

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

06F248 BATCH NO.:

**STHOD:

METHOD 3520C/8015B

% MOISTURE: NA MATRIX:

DILUTION FACTOR: .98 SAMPLE ID:

LAB SAMP ID:

LAB FILE ID:

PREP. BATCH:

DATE ANALYZED:

1.01

10-14131-004

F248-04

DSF038W

TF27002A

TF27010A

F248-04M TF27011A

DSF038W

SMPL RSLT

(mg/L)

TF27002A

F248-04S TF27012A

DSF038W

TF27002A

DATE EXTRACTED: 06/26/0613:30 06/26/0613:30 06/26/0613:30

ND

06/27/0616:46 06/27/0617:29 06/27/0618:11

MS RSLT

(mg/L)

4.62

DATE COLLECTED: 06/21/06

DATE RECEIVED: 06/22/06

SPIKE AMT

(mg/L)

5

MS

% REC

91

CALIB. REF: ACCESSION:

PARAMETER

Diesel

Hexacosane

SURROGATE PARAMETER ______

(mg/L) . 253

. 238

SPIKE AMT MS RSLT MS % REC (mg/L)

SPIKE AMT

(mg/L)

5.05

94

.25

(mg/L)

SPIKE AMT MSD RSLT

.242

(mg/L)

% REC 97

MSD

MSD RSLT

(mg/L)

4.55

65-135

QC LIMIT

(%)

5014

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14131

METHOD 300.0 ANIONS

SDG#: 06F248

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14131

SDG:

06F148

METHOD 300.0 ANIONS

Five (5) water samples were received on 06/22/06 for Nitrate -N and Sulfate analyses by method 300.0 in accordance with "Method for Determination of Inorganic Anions by Ion Chromatography", EPA 600/84-017.

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blanks were free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limits.

4. Duplicate

Sample F248-04 was analyzed for duplicate. %RPDs were within QC limit.

5. Matrix Spike

Sample F248-04 was spiked. Recoveries were within QC limit.

6. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

Nitrate-N was reported as Nitrogen concentration.

SAMPLE RESULTS

METHOD 300.0 NITRATE-N

Client : SES-TECH

Hatrix : WATER

Project : CAMP PENDLETON, UST SITE 14131

Batch No. : 06F248

Client Project Batch No.

Collection Received REP BATCH DATETIME DATETIME	t	NA	YN	¥¥.	CF044W 06/21/06 06/22/06	06/21/06	06/21/06	06/21/06	06/21/06	06/21/06	06/21/06
CAL REF PRE	•	_		_	AF22-13 1CF		_				_
LFID		AF22-03	AF22-04	AF22-05	AF22-19	AF22-35	AF22-36	AF22-39	AF22-40	AF22-41	AF22-45
Extraction DATETIME	1 1 1 1 1 1 1 1 1 1 1 1	NA	NA AN	A.	NA	NA	NA	AN	NA	NA	NA
Analysis DATETIME	; ; ; 1	06/22/0614:07	06/22/0614:25	06/22/0614:42	06/22/0619:05	06/22/0623:48	06/23/0600:05	06/23/0600:58	06/23/0601:15	06/23/0601:33	06/23/0602:43
MDL (mg/L)	1 1 1 1	50	.05	50.	.05	•	52:	5	52:	53	53.
RL (mg/L)		-	٦.	Ξ.	ς,	~	ż	٠,	5	'n	5.
MOIST	1 1 1 1	¥	A A	A.	KA	ΑΝ	A	X A	NA	¥.	NA
DLF	:	~	 -		-	20	Ŋ	ហ	Ś	'n	ς.
RESULTS (INg/L)	!	2	1.88	1.88	1,19	46.8	8.67	8.66	19.2	6.9	6.8
EMAX SAMPLE 1D	1 1 1 1	1CF044WB	ICF044ML	ICF044WC	F248-03	F248-02	F248-04	F248-04D	F248-04M	F248-05	F248-06
SAMPLE ID	· (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MBLK1W	LCS1W	LCD1W	10-14131-003	10-14131-002	10-14131-064	10-14131-0040UP	10-14131-004MS	10-14131-005	10-14131-006

() () () () () () ()				-						Matrix		TER
Client : SES-TECH Project : CAMP PEN	SES-TECH CAMP PENDLETON, UST SITE 14131	14131								Instr	Instrument ID : 1100	00
Batch No. : 06F248				11 11 11 11 11 11	11 11 11 11 11	11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11 11 11 11 11		
				č	į	-	4004				Collection	Received
C 1 17 17 17 17 17 17 17 17 17 17 17 17 1	SAMPLE ID	RESULTS	DI F MOTST	(/ WD/		DATETIME	DATETIME	LFID	CAL REF	PREP BATCH	DATETIME	DATETIME
אמורב זים	אינו די ויהי	(1 km)				1 1	1 l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 6 1		; ; ;	1 1 1 1 1 1 1
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	any70301	Ş	₹ T	ď	ž	06/22/0614:07	яĸ	AF22-03	AF22-01	1CF044W	NA	K :
mbck!# rs1µ	105044	76 7	(()	, ru	52	06/22/0614:25	NA	AF22-04	AF22-01	ICF044W	Ψ.	YY :
	10E04407	7 6 7	₩	i ru	i K	06/22/0614:42	NA NA	AF22-05	AF22-01	1CF044W	AN	AN C
10-14131-004	F248-04	2.18	- IL	2.5	<u> </u>	06/23/0600:05	NA	AF22-36	AF22-25	ICF044W	06/21/06	06/22/06
10-14131-004DUP	F248-04D		ι νυ Κ	2.5	1.25	06/23/0600:58	NA	AF22-39	AF22-37	1CF044W	06/21/06	00/52/00
10-14131-004MS	F248-04M	106	17 Y	2.5	1.25	06/23/0601:15	NA NA	AF22-40	AF22-37	ICF044W	00/51/00	00/55/00
MBLKSW	1CF049WB	9	1 NA	r.	<u>بح</u>	06/26/0621:01	M.M.	AF26-30	AF26-25	1CF048W	AN:	ž
TCS57	1CF049WL	66.7	- L	ιĴ	<u>ئ</u>	06/26/0621:18	NA	AF26-31	AF26-25	1CF048W	X :	¥ = 7
LCD24	1CF049VC	66 7	- NA	πĵ	52.	06/26/0621:36	NA	AF26-32	AF26-25	ICF048W	MA 0, 10,	## 04 (22) (04
10-14131-002	F248-02	1460	100 NA	20	52	06/27/0603:09	NA	AF26-51	AF26-49	ICF048W	00/17/00	00/22/00
10-14131-003	F248-03	131	10 NA	w	2.5	06/27/0603:27	AX.	AF26-52	AF26-49	ICF048W	00/21/00	00/22/00
10-14131-005	F248-05	241	20 NA	10	ហ	06/27/0603:45	NA NA	AF26-53	AF26-49	ICF048W	00/17/00	00/22/00
10-14131-006	F248-06	240	20 NA	10	'n	06/27/0604:02	NA A	AF26-54	AF26-49	1CF048W	00/17/00	00/27/00

vehorr dare: Printed by:

MA 60:00:7 0007/67/0 Cherry Dam

Ident:

AF22-45 F248-06 DF=5 Analysis from: 6/23/2006 2:43:42 AM

File:

Q6230243.CHW

Last save: 6/23/2006 2:58:09 AM

Last save: 6/22/2006 1:30:14 PM

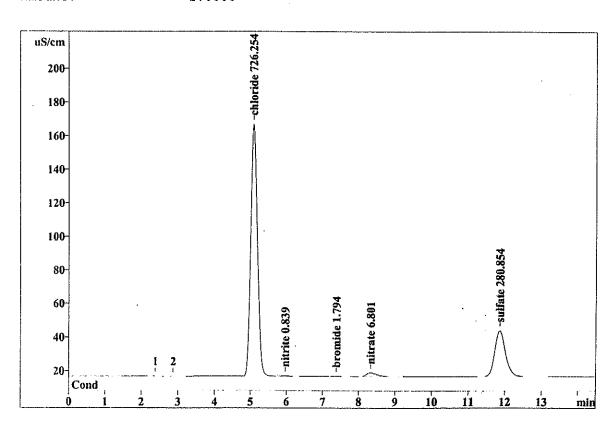
Method:

IC100-E08.mtw

Run operator:

Cherry Dam

Analysis number: 18579


SAMPLE:

Vial number: Volume:

45 1.0 µL 5.00

Dilution: Amount:

1.0000

Quantitation method: Custom

No	Retention	Height	Area	Conc.	Name
	min	uS/cm	uS/cm*sec	mg/L	
1	2.38	0.08	1.072	0.000	
2	2.86	0.06	1.318	0.000	
3	5.07	150.17	1913.454	726.254	chloride
4	5.97	0.24	3.564	0.839	nitrite
5	7.38	0.10	1.616	1.794	bromide
6	8.33	2.20	43.722	6,801	nitrate 🗸
7	11.86	27.15	545.112	280.854	sulfate
7	14.50	180.01	2509.859	1016.542	

This report has been created by IC Net METROHM LTD

Printed by:

Cherry Dam

Ident:

Analysis from:

AF26-54 F248-06 DF=20

6/27/2006 4:02:39 AM

File: q6270402.chw

Last save: 6/27/2006 4:17:05 AM

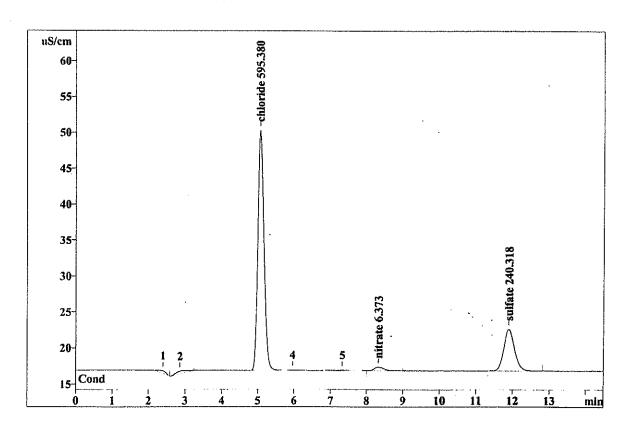
Last save: 6/26/2006 12:08:46 P

Modified!

Method:

IC100-E08.mtw Cherry Dam

Run operator:


Analysis number: 18698

SAMPLE:

Vial number: Volume: Dilution: Amount:

54

1.0 µL 20.00 1.0000

Quantitation method: Custom

No	Retention min	Height	Area uS/cm*sec	Conc. mg/L	Name
. 1	2.40	0.37	5.226	0.000	
2	2.87	0.37	7.811	0.000	
3	5.06	33.38	391.115	595.380	chloride
4	5.96	0.07	0.951	0.000	
5	7.33	0.05	1.308	0.000	
6	8.32	0.49	9.047	6.373	nitrate
7	11.90	5.78	115.638	240.318	sulfate/
7	14.50	40.51	531.096	842.072	

This report has been created by IC Net METROHM L'TD

QC SUMMARIES

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: SES-TECH
PROJECT: CAMP PENDLETON, UST SITE 14131
BATCH NO.: 06F248

METHOD 300.0

METHOD:

Ä DATE COLLECTED: NA DATE RECEIVED: NA % MOISTURE: 06/22/0614:42 ICF044W AF22-01 1CF044WC AF22-05 06/22/0614:25 1CF044W AF22-01 1CF044WL AF22-04 06/22/0614:07 |CF044W |AF22-01 MBLK1W 1CF044WB AF22-03 WATER DILUTION FACTOR: 1 SAMPLE ID: ME LAB SAMP ID: 10 LAB FILE ID: AF DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:

۾		_
MAX RP	2	20
OC LIMIT MAX RPD		90-110
RPD	2	0
BSD % DEC		94
BSD RSLT		1.88
SPIKE AMT	2 20	2
BS REC		7,6
BS RSLT (mq/L)	ŀ	1.88
SPIKE AMT (mg/L)	1 1 1 1	2
BLNK RSLT (mg/L)	1 4 5 1 1 1 4	Q
PARAMETER	()	Nitrate-k

EMAX QUALITY CONTROL DATA MS ANALYSIS

SES-TECH CAMP PENDLETON, UST SITE 14131

06F248

PROJECT:

BATCH NO.:

METHOD 300.0 METHOD:

% MOISTURE: 10-14131-004 F248-04 AF22-36 WATER MATRIX:
DILUTION FACTOR: 5
SAMPLE 1D: LAB SAMP ID: LAB FILE ID:

F248-04M AF22-40

ĕ.

06/23/0601:15 ICF044W AF22-37 06/23/0600:05 DATE ANALYZED: PREP. BATCH: CALIB. REF: DATE EXTRACTED:

DATE COLLECTED: 06/21/06 DATE RECEIVED: 06/22/06

1CF044W AF22-25

EMAX QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

SES-TECH CAMP PENDLETON, UST SITE 14131 06F248

PROJECT: CL LENT:

06/23/0600:58 ICF044W AF22-37 F248-04D AF22-39 06/23/0600:05 10-14131-004 F248-64 AF22-36 METHOD 300.0 1CF044W AF22-25 DILUTION FACTOR: 5 SAMPLE 10:
EMAX SAMP 10:
LAB FILE 10:
DATE EXTRACTED:
DATE ANALYZED:
PREP. BATCH:
CAL1B. REF: BATCH NO.: METHOD:

¥

% MOISTURE:

DATE COLLECTED: 06/21/06 DATE RECEIVED: 06/22/06

. QC LIMIT		20
RPD RSLT QC LIMIT % (%)	1 1 1 1	0
DUPL RSLT (mg/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.66
SMPL RSLT (mg/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.67
PARAMETER	1 1 1 1 1 1 1 1	Nitrate-N

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CL:ENT:

₹ žχ DATE COLLECTED: DATE RECEIVED: % MOISTURE: 06/22/0614:42 ICF044W AF22-01 1CF044WC AF22-05 ¥ SES-TECH
CAMP PENDLETON, UST SITE 14131
06F248
METHOD 360.0 06/22/0614:25 1CF044W AF22-01 ICF044WL AF22-04 06/22/0614:07 ICF044W AF22-01 MBLK1W ICF044WB AF22-03 WATER DILUTION FACTOR: 1 DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF: SAMPLE ID: LAB SAMP ID: LAB FILE ID: PROJECT: BATCH NO.: MATRIX: METHOD:

BLNK RSLT	SPIKE AMT	BS RSL1	SS	SPIKE AMI	RSD RSI T	SS	Uda	OC LIMIT MAX RPD	MAX RPD
(mg/L)	(mg/L)	(mg/L)	% REC	(mg/L)	(mg/L)	% REC	_	(%) (%)	· · · · · · · · · · · · · · · · · · ·
	f		1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	;	1 1 1 1
GN.	5	4.91	86	S	4.91	88	0	90-110	20

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

SES-TECH CAMP PENDLETON, UST SITE 14131 06F248 CL IENT:

PROJECT:

METHOD 300.0 BATCH NO.: METHOD:

ž ž ¥ DATE COLLECTED: DATE RECEIVED: % MOISTURE: 06/26/0621:36 1CF048W AF26-25 1CF0494C AF26-32 06/26/0621:18 ICF048W AF26-25 I CF0494L AF26-31 06/26/0621:01 MBLKZW ICF049WB AF26-30 ICF048W AF26-25 WATER Ā DILUTION FACTOR: 1 SAMPLE ID:
LAB SAMP ID:
LAB FILE ID:
DATE EXTRACTED:
DATE ANALYZED:
PREP. BATCH:
CALIB. REF: MATRIX:

MAX RPD	(%)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8
OC LIMIT MAX RPD	% REC (%) (%) (%)	1 1 1 1	90-110
RPD	(%)		0
BSD	% REC	1 1 1 1	100
BSD RSLT	(mg/L)		4.99
SPIKE AMT	(mg/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7
88	% REC		4.99 100
BS RSLT	(mg/L) %	1 1 1 1 1 1	4.99
SPIKE AMT BS RSLT	(mg/L)	* * * * * * * * * * * * * * * * * * * *	ιΩ
BLNK RSLT	(mg/L)		QX
	ARAMETER	1 1 6 1 6 1 1 1 1	iulfate
	PAR	-	Sul

EMAX QUALITY CONTROL DATA MS ANALYSIS

SES-TECH CAMP PENDLETON, UST SITE 14131

CLIENT:

PROJECT:

06F248 BATCH NO.:

METHOD 300.0 METHOD:

WATER MATRIX:

ž

% MOISTURE:

DILUTION FACTOR: 5 SAMPLE 10: LAB SAMP 1D: LAB FILE 1D:

F248-04M AF22-40 10-14131-004 F248-04 AF22-36 DATE EXTRACTED: DATE ANALYZED:

06/23/0601:15 ICF044W AF22-37 06/23/0600:05

DATE COLLECTED: 06/21/06 DATE RECEIVED: 06/22/06

1CF044W AF22-25

PREP. BATCH: CALIB. REF:

ACCESSION:

Sulfate PARAMETER

80-120 QC LIMIT #S REC 101 106 (mg/L) MS RSLT SPIKE AMT 52 (mg/L) 81.2 SMPL RSLT (mg/L)

EMAX DUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

	NA	06/21/06 06/22/06
	% MOISTURE:	DATE COLLECTED: DATE RECEIVED:
SES-TECH CAMP PENDLETON, UST SITE 14131 06F248 METHOD 300.0	ſΛ	F248-04D AF22-39 NA 06/23/0600:58 ICF044W AF22-37
SES-TECH CAMP PENDLETON, 06F248 METHOD 300.0	WATER	10-14131-004 F248-04 AF22-36 NA 06/23/0600:05 ICF0444 AF22-25
CLIEN1: PROJECT: BATCH NO.: METHOD:		SAMPLE ID: EMAX SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:

RPD RSLT QC LIMIT % (%)

DUPL RSLT (mg/L)

SMPL RSLT (mg/L) 81.1

81.2

PARAMETER -------Sulfate